2023-06-12 13:58:54 +02:00
% vim: fdm=marker fmr=<<<,>>>
%\documentclass[notes]{beamer}
\documentclass [] { beamer}
%%%%%%%%%%%%%%%
% Preamble <<<
%%%%%%%%%%%%%%%
\usepackage [british] { babel}
2023-07-06 13:32:02 +02:00
\usepackage { csquotes}
2023-06-12 13:58:54 +02:00
\usepackage { amsmath}
\usepackage { hyperref}
2023-07-06 13:32:02 +02:00
\usepackage [backend=bibtex,style=numeric,maxnames=1] { biblatex}
2023-06-12 13:58:54 +02:00
\usepackage { appendixnumberbeamer}
\usepackage { graphicx}
\usepackage { tikz}
\usepackage { xurl}
2023-07-04 16:38:20 +02:00
\usepackage { physics}
2023-07-06 13:32:02 +02:00
\usepackage { cancel}
\usepackage { multicol}
2023-06-12 13:58:54 +02:00
\graphicspath { { .} { ./figures/} { ../../figures/} }
\usepackage { todo}
\addbibresource { ../../bibliotheca/bibliography.bib}
% Use arXiv identifier if available
\DeclareCiteCommand { \arxivcite }
{ \usebibmacro { prenote} }
{ \usebibmacro { citeindex} %
2023-07-06 13:32:02 +02:00
[\usebibmacro { cite} ]
2023-06-12 13:58:54 +02:00
\newunit
2023-07-04 16:38:20 +02:00
\clearfield { eprintclass}
2023-06-12 13:58:54 +02:00
\usebibmacro { eprint} }
{ \multicitedelim }
{ \usebibmacro { postnote} }
\newcommand { \imagesource } [1]{ ~\\ [0pt] \vspace * { -7pt} \hspace * { 10pt} { \tiny #1} }
\newcommand { \imagecredit } [1]{ \imagesource { Credit:\thinspace #1} }
2023-07-06 13:32:02 +02:00
%\newcommand{\imagecite}[1]{\imagesource{\arxivcite{#1}}}
2023-06-12 13:58:54 +02:00
% Disable Captions
\setbeamertemplate { caption} { \raggedright \small \insertcaption \par }
% no to navigation, yes to frame numbering
\beamertemplatenavigationsymbolsempty
\setbeamerfont { page number in head/foot} { size=\normalsize }
\setbeamertemplate { page number in head/foot} { \insertframenumber /\inserttotalframenumber }
%\setbeamercolor{page number in head/foot}{fg=red}
\setbeamerfont { section in head/foot} { size=\small }
\setbeamercolor { section in head/foot} { fg=gray}
\setbeamertemplate { section in head/foot} { \textit { \insertsectionhead } }
%\setbeamertemplate{footline}[frame number]
\setbeamertemplate { footline}
{ %
\leavevmode %
\hbox { %
\begin { beamercolorbox} [wd=.7\paperwidth ,ht=2.55ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{ title in head/foot} %
\usebeamertemplate * { section in head/foot} %
\hfill %
\end { beamercolorbox}
\begin { beamercolorbox} [wd=.1\paperwidth ,ht=2.55ex,dp=1ex,sep=0pt]{ my empty section}
\hfill %
\end { beamercolorbox}
\begin { beamercolorbox} [wd=.2\paperwidth ,ht=2.55ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{ page number in head/foot} %
\hfill %
\usebeamertemplate * { page number in head/foot} %
\end { beamercolorbox} } %
}
%% From https://tex.stackexchange.com/a/55849
% Keys to support piece-wise uncovering of elements in TikZ pictures:
% \node[visible on=<2->](foo){Foo}
% \node[visible on=<{2,4}>](bar){Bar} % put braces around comma expressions
%
% Internally works by setting opacity=0 when invisible, which has the
% adavantage (compared to \node<2->(foo){Foo} that the node is always there, hence
% always consumes space plus that coordinate (foo) is always available.
%
% The actual command that implements the invisibility can be overriden
% by altering the style invisible. For instance \tikzsset{invisible/.style={opacity=0.2}}
% would dim the "invisible" parts. Alternatively, the color might be set to white, if the
% output driver does not support transparencies (e.g., PS)
%
\tikzset {
invisible/.style={ opacity=0} ,
visible on/.style={ alt={ #1{ } { invisible} } } ,
alt/.code args={ <#1>#2#3} { %
\alt <#1>{ \pgfkeysalso { #2} } { \pgfkeysalso { #3} } % \pgfkeysalso doesn't change the path
} ,
}
\hypersetup { pdfpagemode=UseNone} % don't show bookmarks on initial view
% >>> Preamble
%%%%%%%%%%%%%%%
% Meta data <<<
%%%%%%%%%%%%%%%
2023-07-04 11:09:35 +02:00
\def \thesistitle { Enhancing Timing Accuracy\texorpdfstring { \\ [0.3cm] } { } in Air Shower Radio Detectors}
\def \thesissubtitle { }
\def \thesisauthorfirst { E.T.}
\def \thesisauthorsecond { de Boone}
2023-07-04 16:38:20 +02:00
\def \thesisauthoremailraw { ericteunis@deboone.nl}
\def \thesisauthoremail { \href { mailto:\thesisauthoremailraw } { \thesisauthoremailraw } }
2023-07-04 11:09:35 +02:00
\def \thesissupervisorfirst { dr. Harm}
\def \thesissupervisorsecond { Schoorlemmer}
2023-07-04 16:38:20 +02:00
\def \thesissupervisoremailraw { }
\def \thesissupervisoremail { \href { mailto:\thesissupervisoremailraw } { \thesissupervisoremailraw } }
2023-06-12 13:58:54 +02:00
2023-07-04 16:38:20 +02:00
\title [\thesistitle] { \thesistitle }
2023-06-12 13:58:54 +02:00
\date { July, 2023}
2023-07-04 11:09:35 +02:00
\author [\thesisauthorfirst\space\thesisauthorsecond] { %
2023-07-04 16:38:20 +02:00
\texorpdfstring { \thesisauthorfirst \space \thesisauthorsecond \thanks { e-mail: \thesisauthoremail } \\
\vspace * { 0.5em}
{ Supervisor: \thesissupervisorfirst \space \thesissupervisorsecond }
} { \thesisauthorfirst \space \thesisauthorsecond <\thesisauthoremailraw >}
2023-07-04 11:09:35 +02:00
}
2023-06-12 13:58:54 +02:00
% >>> Meta data
2023-07-04 16:38:20 +02:00
\newcommand { \tclock } { \ensuremath { t_ \mathrm { clock} } }
2023-07-06 13:32:02 +02:00
\newcommand { \tClock } { \tclock }
2023-07-04 16:38:20 +02:00
\newcommand { \ns } { \ensuremath { \mathrm { ns} } }
\newcommand { \pTrue } { \phi }
\newcommand { \PTrue } { \Phi }
\newcommand { \pMeas } { \varphi }
\newcommand { \pTrueEmit } { \pTrue _ 0}
\newcommand { \pTrueArriv } { \pTrueArriv '}
\newcommand { \pMeasArriv } { \pMeas _ 0}
\newcommand { \pProp } { \pTrue _ d}
\newcommand { \pClock } { \pTrue _ c}
2023-06-12 13:58:54 +02:00
\begin { document}
{ % Titlepage <<<
2023-07-04 16:38:20 +02:00
\setbeamertemplate { background}
{ %
\parbox [c] [\paperheight] [c] { \paperwidth } { %
\centering %
\vfill %
\includegraphics [width=\textwidth] { beacon/array_ setup_ gps_ transmitter_ cows.png} %
\vspace * { 2em}
} %
}
2023-06-12 13:58:54 +02:00
\setbeamertemplate { footline} { } % no page number here
\frame { \titlepage }
} % >>>
%%%%%%%%%%%%%%%
% Start of slides <<<
%%%%%%%%%%%%%%%
2023-07-06 13:32:02 +02:00
\section { Cosmic Particles Detection} % <<<<
2023-07-04 11:09:35 +02:00
% Sources, Types, Propagation, Observables
% Flux -> Large instrumentation area
% Detection methods of Auger
% - FD, SD
% AERA / AugerPrime RD or GRAND
2023-07-04 16:38:20 +02:00
\begin { frame} { Ultra High Energy particles}
2023-07-06 13:32:02 +02:00
\begin { figure}
\centering
\includegraphics [width=0.9\textwidth] { astroparticle/bk978-0-7503-2344-4ch1f2_ hr.jpg} %
\imagecredit { Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC}
\end { figure}
2023-07-04 11:09:35 +02:00
\end { frame}
2023-07-06 13:32:02 +02:00
\begin { frame} { Ultra High Energy particle flux}
\begin { columns}
\begin { column} { 0.6\textwidth }
\begin { figure}
\centering
%\includegraphics[width=0.7\textwidth]{astroparticle/cr_flux_PDG_2023.pdf}%
\includegraphics [width=\textwidth] { astroparticle/spectrum.png} %
\imagecredit { \nocite { PDG2022} Particle Data Group}
\end { figure}
\end { column}
\begin { column} { 0.5\textwidth }
Large Area Experiments:\\
%\begin{multicols}{2}
\begin { itemize}
\item Pierre Auger Observatory
\item Giant Radio Array for Neutrino Detection
\end { itemize}
\vfill
\begin { figure}
\includegraphics [width=\textwidth] { images/A-schematic-of-the-Pierre-Auger-Observatory-where-each-black-dot-is-a-water-Cherenkov.png}
\imagecredit { \href { https://www.researchgate.net/figure/A-schematic-of-the-Pierre-Auger-Observatory-where-each-black-dot-is-a-water-Cherenkov_ fig1_ 319524774} { Hans O. Klages} }
\end { figure}
%\end{multicols}
\end { column}
\end { columns}
2023-07-04 16:38:20 +02:00
\end { frame}
2023-07-06 13:32:02 +02:00
\begin { frame} { Air Showers}
% Observables
% \begin{columns}
% \begin{column}{0.45\textwidth}
% \begin{figure}
% \includegraphics[width=\textwidth]{airshower/shower_development_depth_iron_proton_photon_with_muons.pdf}
% \imagecredit{H. Schoorlemmer}
% \end{figure}
% \end{column}
% \hfill
% \begin{column}{0.45\textwidth}
% \end{column}
% \end{columns}
\begin { figure}
\hspace * { -2em}
\centering
\includegraphics [width=1.13\textwidth] { airshower/Auger_ ScreenShot_ GoldenHybrid1_ shower_ SD_ FD.png}
\imagesource { From:~\url { https://opendata.auger.org/display.php?evid=172657447200} }
\end { figure}
2023-07-04 16:38:20 +02:00
\end { frame}
2023-07-06 13:32:02 +02:00
\begin { frame} { Air Shower Radio Emission}
\begin { columns}
\begin { column} { 0.45\textwidth }
\begin { figure}
\includegraphics [width=\textwidth] { airshower/shower_ development_ depth_ iron_ proton_ photon.pdf}
\imagecredit { H. Schoorlemmer}
\end { figure}
\end { column}
\hfill
\begin { column} { 0.545\textwidth }
\begin { figure}
\centering
Charge excess
\includegraphics [width=\textwidth] { airshower/airshower_ radio_ polarisation_ askaryan.png} \\ %
\vspace * { 2em}
Geomagnetic
\includegraphics [width=\textwidth] { airshower/airshower_ radio_ polarisation_ geomagnetic.png} %
\imagesource { \arxivcite { Huege:2017bqv} }
\end { figure}
\end { column}
\end { columns}
2023-07-04 16:38:20 +02:00
\end { frame}
2023-07-04 11:09:35 +02:00
% >>>>
\section { Radio Interferometry} % <<<<
2023-07-04 16:38:20 +02:00
\begin { frame} { Radio Interferometry: Concept}
Interferometry: Amplitude + Timing information of the $ \vec { E } $ -field\\
\vspace * { 0.8em }
\begin { columns}
\begin { column} { 0.4\textwidth }
\begin { figure}
\includegraphics <1>[width=\textwidth ]{ radio_ interferometry/rit_ schematic_ base.pdf} %
\includegraphics <2>[width=\textwidth ]{ radio_ interferometry/rit_ schematic_ far.pdf} %
\includegraphics <3>[width=\textwidth ]{ radio_ interferometry/rit_ schematic_ close.pdf} %
\includegraphics <4>[width=\textwidth ]{ radio_ interferometry/rit_ schematic_ true.pdf} %
\end { figure}
\end { column}
\begin { column} { 0.6\textwidth }
\vspace * { \fill }
\begin { itemize}
\item <1-> Measure signal $ S _ i ( t ) $ at antenna $ \vec { a _ i } $
\item <2-> Calculate light travel time \\ [5pt]
\quad $ \Delta _ i ( \vec { x } ) = \frac { \left | \vec { x } - \vec { a _ i } \right | } { c } n _ { eff } $
\item <2-> Sum waveforms accounting \\
for time delay \\ [5pt]
\quad $ S ( \vec { x } , t ) = \sum S _ i ( t + \Delta _ i ( \vec { x } ) ) $
\end { itemize}
\vspace * { \fill }
\begin { figure} % Spatially
\includegraphics <1>[width=0.8\textwidth ]{ radio_ interferometry/single_ trace.png} %
\includegraphics <2>[width=0.8\textwidth ]{ radio_ interferometry/trace_ overlap_ bad.png} %
\includegraphics <3>[width=0.8\textwidth ]{ radio_ interferometry/trace_ overlap_ medium.png} %
\includegraphics <4>[width=0.8\textwidth ]{ radio_ interferometry/trace_ overlap_ best.png} %
\end { figure}
\end { column}
\end { columns}
\end { frame}
\begin { frame} { Radio Interferometry: Image}
\begin { figure}
\centering
\includegraphics [width=0.7\textwidth] { 2006.10348/fig01.png} %
2023-07-06 13:32:02 +02:00
\imagesource { \arxivcite { Schoorlemmer:2020low} }
2023-07-04 16:38:20 +02:00
\end { figure}
2023-07-04 11:09:35 +02:00
\end { frame}
% >>>>
2023-07-06 13:32:02 +02:00
\section { Timing in Air Shower Radio Detectors} % <<<<
2023-07-04 11:09:35 +02:00
% GNSS
% reference system: White Rabbit, AERA beacon, (ADS-B?)
% GRAND setup and measurements
2023-07-06 13:32:02 +02:00
\begin { frame} { Timing in Air Shower Radio Detectors}
2023-07-04 16:38:20 +02:00
% Geometry
2023-07-06 13:32:02 +02:00
Relative timing is important for Radio Interferometry. { \small ($ 1 \ns \, @ c \sim 30 \mathrm { cm } $ )} \\
\vspace * { 1em}
Large inter-detector spacing ($ \sim 1 \mathrm { km } $ )\\
$ \mapsto $ Default timing mechanism: Global Navigation Satellite Systems\\
\vspace * { 1em}
What is the accuracy of such systems?\\
\visible <2>{
\quad @Auger: $ \sigma _ t \gtrsim 10 \ns $
}
\vfill
2023-07-04 16:38:20 +02:00
\begin { columns}
2023-07-06 13:32:02 +02:00
\begin { column} { 0.45\textwidth }
\begin { figure}
\visible <2>{
\centering
\includegraphics [width=\textwidth] { gnss/auger/1512.02216.figure3.gnss-time-differences.png}
\vspace * { -1em}
\imagesource { \arxivcite { PierreAuger:2015aqe} }
}
\end { figure}
\end { column}
\hfill
\begin { column} { 0.5\textwidth } %<<<
2023-07-04 16:38:20 +02:00
\vfill
\begin { figure}
\begin { tikzpicture} [scale=1]
\clip (2.5 , 0) rectangle ( 6, 2.5);
\node [anchor=south west, inner sep=0] (image) at (0,0) { \includegraphics [width=\textwidth] { beacon/array_ setup_ gps_ transmitter_ cows.png} } ;
%\draw[help lines,xstep=1,ystep=1] (0,0) grid (11,5);
\end { tikzpicture}
\imagecredit { H. Schoorlemmer}
\end { figure}
2023-07-06 13:32:02 +02:00
\end { column} %>>>
2023-07-04 16:38:20 +02:00
\end { columns}
2023-07-04 11:09:35 +02:00
\end { frame}
% Geometry
% Pulse method + SNR
% Sine method + SNR
2023-07-06 13:32:02 +02:00
\begin { frame} [t]{ Timing in Radio Detectors: Beacon Synchronisation}
2023-07-04 16:38:20 +02:00
% Geometry
2023-07-06 13:32:02 +02:00
Relative timing is important for Radio Interferometry.\\
\vspace * { 1em}
Default Timing mechanism: { \color <1>{ red} Global Navigation Satellite Systems} \\
\visible <1->{
+Extra Timing mechanism: { \color <1>{ blue} Beacon} (Pulse, Sine)%, {\color{green} ADS-B}
2023-07-04 16:38:20 +02:00
}
2023-07-06 13:32:02 +02:00
\vfill
2023-07-04 16:38:20 +02:00
\begin { figure}
\hspace * { -2em}
\begin { tikzpicture}
2023-07-06 13:32:02 +02:00
\node [anchor=south west, inner sep=0] (image) at (0,0) { \includegraphics [width=0.8\textwidth] { beacon/array_ setup_ gps_ transmitter_ cows.png} } ;
2023-07-04 16:38:20 +02:00
\begin { scope} [x={ (image.south east)} , y={ (image.north west)} ]
%\draw[help lines,xstep=.1,ystep=.1] (0,0) grid (1,1);
%\foreach \x in {0,1,...,9} { \node [anchor=north] at (\x/10,0) {0.\x}; }
%\foreach \y in {0,1,...,9} { \node [anchor=east] at (0,\y/10) {0.\y}; }
\node (transmitter) at (0.23, 0.32) { } ;
\node (gnss) at (0.85, 0.87) { } ;
2023-07-06 13:32:02 +02:00
%% Aeroplane
%\node[ visible on=<{2-}>] (aeroplane) at (0.5, 0.67) {\scalebox{-1}[1]{\includegraphics[width=1.5cm]{templates/aeroplane.png}}};
%\draw[green, ultra thick, visible on=<{2-}>] (aeroplane.center) circle[radius=8mm];
%% Circles
2023-07-04 16:38:20 +02:00
\draw [red, ultra thick, visible on=<{1-}>] (gnss.center) circle[radius=8mm];
\draw [blue, ultra thick, visible on=<{1-}>] (transmitter.center) circle[radius=8mm];
2023-07-06 13:32:02 +02:00
%% Mask Transmitter
\fill [white, visible on=<0>] (0,0) rectangle (0.45,1) ;
2023-07-04 16:38:20 +02:00
\end { scope}
\end { tikzpicture}
\imagecredit { H. Schoorlemmer}
\end { figure}
\end { frame}
2023-07-06 13:32:02 +02:00
\section { Beacon Synchronisation}
\begin { frame} [t]{ Beacon Synchronisation: Geometry}
Local antenna time $ t' _ i $ due to time~delay~$ t _ { \mathrm { d } i } $ , clock~skew~$ \sigma _ i $ \\
and transmitter~time~$ t _ \mathrm { tx } $
\begin { equation*}
t'_ i = t_ { tx} + t_ { \mathrm { d} i} + \sigma _ i
\end { equation*}
\vfill
\begin { figure}
\begin { tikzpicture}
[inner sep=2mm,
place/.style={ circle,draw=black!50,fill=white,thick}
]
\clip (0 , 0) rectangle (9, 2.5);
\node [anchor=south west, inner sep=0] (image) at (0,0) { \includegraphics [width=0.8\textwidth] { beacon/array_ setup_ gps_ transmitter_ cows.png} } ;
\begin { scope} [x={ (image.south east)} , y={ (image.north west)} ]
%\draw[help lines,xstep=.1,ystep=.1] (0,0) grid (1,1);
%\foreach \x in {0,1,...,9} { \node [anchor=north] at (\x/10,0) {0.\x}; }
%\foreach \y in {0,1,...,9} { \node [anchor=east] at (0,\y/10) {0.\y}; }
%\fill[white] (0.4,0) rectangle (0.6,0.4);
\node (transmitter) at (0.23, 0.32) { } ;
\node (ant1) at (0.51, 0.32) [place] { 1} ;
%\node (ant1) at (0.72, 0.25) [place] {1};
\node (ant2) at (0.65, 0.50) [place] { 2} ;
%
\draw (transmitter.center) to node [below] { $ t _ { \mathrm { d } 1 } $ } (ant1) ;
\draw (transmitter.center) to node [above] { $ t _ { \mathrm { d } 2 } $ } (ant2) ;
\end { scope}
\end { tikzpicture}
\imagecredit { H. Schoorlemmer}
\end { figure}
\vfill
Measured time difference:\\
\vspace { -0.5em}
\begin { equation*}
\Delta t'_ { 12} = t'_ 1 - t'_ 2 = \Delta t_ { \mathrm { d} 12} + \sigma _ { 12} + (t_ \mathrm { tx} - t_ \mathrm { tx} )
\end { equation*}
\end { frame}
2023-07-04 16:38:20 +02:00
\subsection { Pulse Beacon}
\begin { frame} { Pulse Beacon}
\begin { figure}
\includegraphics [width=\textwidth] { pulse/antenna_ signals_ tdt0.2_ zoom.pdf}
\end { figure}
\vfill
\end { frame}
\begin { frame} { Pulse Beacon}
Correlation: similarity between two signals.\\
\begin { figure}
\includegraphics [width=\textwidth] { pulse/correlation_ tdt0.2_ zoom.pdf}
\end { figure}
\end { frame}
\begin { frame} { Pulse Beacon Timing}
\begin { figure}
2023-07-06 13:32:02 +02:00
\centering
\includegraphics [width=0.8\textwidth] { pulse/time_ res_ vs_ snr_ multiple_ dt.pdf}
2023-07-04 16:38:20 +02:00
\end { figure}
\end { frame}
\subsection { Sine Beacon}
\begin { frame} { (Multi)Sine Beacon}
2023-07-06 13:32:02 +02:00
Phase measurement $ \varphi ' _ i $ using Fourier Transform, $ k $ ~unknown:
2023-07-04 16:38:20 +02:00
\begin { equation*}
2023-07-06 13:32:02 +02:00
t'_ i = \left [ \frac{\varphi'_i}{2\pi} \; + \; k \right] T
2023-07-04 16:38:20 +02:00
\end { equation*}
\begin { figure}
\includegraphics [width=.45\textwidth] { methods/fourier/waveform.pdf}
\hfill
2023-07-06 13:32:02 +02:00
\includegraphics <1>[width=.45\textwidth ]{ methods/fourier/noisy_ spectrum.pdf}
2023-07-04 16:38:20 +02:00
\end { figure}
\end { frame}
\begin { frame} { (Multi)Sine Beacon Timing}
2023-07-06 13:32:02 +02:00
\vspace * { 1em}
2023-07-04 16:38:20 +02:00
\begin { figure}
2023-07-06 13:32:02 +02:00
\centering
\includegraphics [width=0.8\textwidth] { beacon/time_ res_ vs_ snr_ large.pdf}
2023-07-04 16:38:20 +02:00
\end { figure}
2023-07-06 13:32:02 +02:00
\vspace * { -1em}
2023-07-04 16:38:20 +02:00
\begin { columns}
2023-07-06 13:32:02 +02:00
\begin { column} [b]{ 0.4\textwidth }
\centering
\tiny
Random~Phasor~Sum:
\autocite { goodman1985:2.9} ~
``Statistical~Optics'',
J.~Goodman
2023-07-04 16:38:20 +02:00
\end { column}
2023-07-06 13:32:02 +02:00
\begin { column} [b]{ 0.7\textwidth }
2023-07-04 16:38:20 +02:00
\tiny \begin { equation*}
p_ \PTrue (\pTrue ; s, \sigma ) =
\frac { e^ { -\left (\frac { s^ 2} { 2\sigma ^ 2} \right )} } { 2 \pi }
+
\sqrt { \frac { 1} { 2\pi } }
\frac { s} { \sigma }
e^ { -\left ( \frac { s^ 2} { 2\sigma ^ 2} \sin ^ 2{ \pTrue } \right )}
\frac { \left (
1 + \erf { \frac { s \cos { \pTrue } } { \sqrt { 2} \sigma } }
\right )} { 2}
\cos { \pTrue }
\end { equation*}
\end { column}
\end { columns}
2023-07-06 13:32:02 +02:00
\end { frame}
2023-07-04 16:38:20 +02:00
2023-07-06 13:32:02 +02:00
\begin { frame} { Beacon Synchronisation: Conclusion}
\vspace * { 2em}
\begin { columns} [T]
\begin { column} { 0.49\textwidth }
\begin { center} \bfseries Pulse \end { center}
\vspace * { -1em}
\begin { itemize}
\item discrete
\item requires template
\end { itemize}
\end { column}
\hfill
\begin { column} { 0.49\textwidth }
\begin { center} \bfseries Sine \end { center}
\vspace * { -1em}
\begin { itemize}
\item continuous
\item longer trace\\ $ \mapsto $ better SNR
\item $ k $ period unknown
\end { itemize}
\end { column}
\end { columns}
\vfill
\begin { columns}
\begin { column} { 0.49\textwidth }
\includegraphics [width=1\textwidth] { pulse/time_ res_ vs_ snr_ multiple_ dt_ small.pdf}
\end { column}
\hfill
\begin { column} { 0.49\textwidth }
\includegraphics [width=1\textwidth] { beacon/time_ res_ vs_ snr_ small.pdf}
\end { column}
\end { columns}
2023-07-04 11:09:35 +02:00
\end { frame}
% >>>>
\section { Single Sine Synchronisation} % <<<<
% Sine method + Radio Interferometry
2023-07-04 16:38:20 +02:00
\begin { frame} { Single Sine Synchronisation}
2023-07-06 13:32:02 +02:00
$ k $ is discrete, lift the period degeneracy using the air~shower radiosignal
\begin { equation*}
t'_ i = (\frac { \varphi '_ i} { 2\pi } + n_ i)T = A_ i + B_ i
\end { equation*}
\vspace * { -2em}
2023-07-04 16:38:20 +02:00
\begin { figure}
%\centering
\hspace * { -5em}
\includegraphics <1>[width=1.3\textwidth ]{ beacon/08_ beacon_ sync_ timing_ outline.pdf} %
\includegraphics <2>[width=1.3\textwidth ]{ beacon/08_ beacon_ sync_ synchronised_ outline.pdf} %
\includegraphics <3>[width=1.3\textwidth ]{ beacon/08_ beacon_ sync_ synchronised_ period_ alignment.pdf} %
\end { figure}
2023-07-06 13:32:02 +02:00
\begin { align*}
\Delta t'_ { ij} & = (A_ j + B_ j) - (A_ i + B_ i) + \Delta t'_ \varphi \\
& = \Delta A_ { ij} + \only <1>{ \Delta t'_ \varphi } \only <2->{ \cancel { \Delta t'_ \varphi } } + k_ { i j} T\\
\end { align*}
2023-07-04 16:38:20 +02:00
\end { frame}
\begin { frame} { Single Sine Synchronisation Simulation}
2023-07-06 13:32:02 +02:00
Air Shower simulation on a grid of 100x100 antennas.
\\
2023-07-04 16:38:20 +02:00
\begin { columns}
2023-07-06 13:32:02 +02:00
\begin { column} { 0.45\textwidth }
2023-07-04 16:38:20 +02:00
\begin { itemize}
2023-07-06 13:32:02 +02:00
\item <2-> Add beacon ($ T \sim 20 \ns $ ) to antenna
\item <2-> Randomise clocks ($ \sigma = 30 \ns $ )
\item <3-> Measure phase with DTFT
\item <3-> Repair clocks for small offsets
\item <3-> Iteratively find best $ k _ { ij } $
2023-07-04 16:38:20 +02:00
\end { itemize}
\end { column}
\hfill
2023-07-06 13:32:02 +02:00
\begin { column} { 0.5\textwidth }
2023-07-04 16:38:20 +02:00
\begin { figure}
2023-07-06 13:32:02 +02:00
\hspace * { -2em}
\includegraphics <1>[width=1.2\textwidth ]{ ZH_ simulation/array_ geometry_ shower_ amplitude.png}
\includegraphics <2>[width=1.2\textwidth ]{ ZH_ simulation/ba_ measure_ beacon_ phase.py.A74.no_ mask.pdf} %
\includegraphics <3>[width=1.2\textwidth ]{ ZH_ simulation/ba_ measure_ beacon_ phase.py.A74.masked.pdf} %
2023-07-04 16:38:20 +02:00
\end { figure}
\end { column}
\end { columns}
\end { frame}
2023-07-06 13:32:02 +02:00
\begin { frame} { Single Sine Synchronisation: Iterative $ k _ { 0 i } $ -finding}
2023-07-04 16:38:20 +02:00
\small {
2023-07-06 13:32:02 +02:00
``Interferometry'' while allowing to shift by $ T = 1 / f _ \mathrm { beacon } $
\\ [5pt]
Iterative process optimizing signal power: \\
\; Scan positions finding the best $ \{ k _ { 0 i } \} $ set,\\
\; then evaluate on a grid near shower axis and zoom in.
2023-07-04 16:38:20 +02:00
}
2023-07-06 13:32:02 +02:00
\only <1-3>{ \begin { figure}
\includegraphics <1>[width=0.8\textwidth ]{ ZH_ simulation/findks/ca_ period_ from_ shower.py.run0.i1.zoomed.beacon.pdf}
\includegraphics <2>[width=0.8\textwidth ]{ ZH_ simulation/findks/ca_ period_ from_ shower.py.maxima.run0.pdf}
\includegraphics <3>[width=0.8\textwidth ]{ ZH_ simulation/findks/ca_ period_ from_ shower.py.reconstruction.run0.power.pdf}
2023-07-04 16:38:20 +02:00
\end { figure} }
2023-07-06 13:32:02 +02:00
\only <4>{ \begin { figure}
\includegraphics [width=0.4\textwidth] { ZH_ simulation/findks/ca_ period_ from_ shower.py.maxima.run1.pdf}
2023-07-04 16:38:20 +02:00
\hfill
2023-07-06 13:32:02 +02:00
\includegraphics [width=0.4\textwidth] { ZH_ simulation/findks/ca_ period_ from_ shower.py.reconstruction.run1.power.pdf}
2023-07-04 16:38:20 +02:00
\vspace { 0.5cm}
2023-07-06 13:32:02 +02:00
\includegraphics [width=0.4\textwidth] { ZH_ simulation/findks/ca_ period_ from_ shower.py.maxima.run2.pdf}
2023-07-04 16:38:20 +02:00
\hfill
2023-07-06 13:32:02 +02:00
\includegraphics [width=0.4\textwidth] { ZH_ simulation/findks/ca_ period_ from_ shower.py.reconstruction.run2.power.pdf}
2023-07-04 16:38:20 +02:00
\end { figure} }
\end { frame}
2023-07-06 13:32:02 +02:00
\begin { frame} { Single Sine Synchronisation: Timing Reparation}
2023-07-04 16:38:20 +02:00
\begin { columns}
\begin { column} { 0.45\textwidth }
{ Phase reparation }
\includegraphics [width=\textwidth] { radio_ interferometry/trace_ overlap/on-axis/dc_ grid_ power_ time_ fixes.py.repair_ phases.axis.trace_ overlap.repair_ phases.pdf} %
\vfill
\includegraphics [width=\textwidth] { radio_ interferometry/dc_ grid_ power_ time_ fixes.py.X400.repair_ phases.scale4d.pdf} %
\label { fig:sine:repairments}
\end { column}
\hfill
\begin { column} { 0.45\textwidth }
{ Phase + Period reparation }
\includegraphics [width=\textwidth] { radio_ interferometry/trace_ overlap/on-axis/dc_ grid_ power_ time_ fixes.py.repair_ full.axis.trace_ overlap.repair_ full.pdf} %
\vfill
2023-07-06 13:32:02 +02:00
\includegraphics [width=\textwidth] { radio_ interferometry/dc_ grid_ power_ time_ fixes.py.X400.repair_ full.scale4d.pdf} %
2023-07-04 16:38:20 +02:00
\end { column}
\end { columns}
2023-07-04 11:09:35 +02:00
\end { frame}
2023-07-06 13:32:02 +02:00
\begin { frame} { Single Sine Synchronisation: Comparison}
\begin { columns}
\begin { column} { 0.45\textwidth }
{ True clock }
\includegraphics [width=\textwidth] { radio_ interferometry/trace_ overlap/on-axis/dc_ grid_ power_ time_ fixes.py.no_ offset.axis.trace_ overlap.no_ offset.pdf} %
\vfill
\includegraphics [width=\textwidth] { radio_ interferometry/dc_ grid_ power_ time_ fixes.py.X400.no_ offset.scale4d.pdf} %
\end { column}
\hfill
\begin { column} { 0.45\textwidth }
{ Phase + Period reparation }
\includegraphics [width=\textwidth] { radio_ interferometry/trace_ overlap/on-axis/dc_ grid_ power_ time_ fixes.py.repair_ full.axis.trace_ overlap.repair_ full.pdf} %
\vfill
\includegraphics [width=\textwidth] { radio_ interferometry/dc_ grid_ power_ time_ fixes.py.X400.repair_ full.scale4d.pdf} %
\end { column}
\end { columns}
\end { frame}
2023-07-04 11:09:35 +02:00
% >>>>
\section { Conclusion} % <<<<
% Single Sine + Air Shower
% Outlook: Parasitic/Active vs Pulse/Sine table
% Parasitic Single Sine: 67MHz Auger
% Implementation for GRAND?
2023-07-04 16:38:20 +02:00
\begin { frame} { Conclusion and Outlook}
2023-07-06 13:32:02 +02:00
\begin { itemize}
\item Cosmic Particles induce Extensive Air Showers\\ [10pt]
\item Relative Timing is crucial to Radio Interferometry\\ [10pt]
\item Pulse and Sine beacons can synchronise effectively\\ [10pt]
\item Single Sine + Air Shower works
\end { itemize}
\vspace * { 2em}
\visible <2>{
Outlook:
\begin { itemize}
\item Parasitic setups, i.e.~the $ 67 \mathrm { MHz } $ in Auger,\\ [10pt]
\item Self-calibration using pulsed beacon
\end { itemize}
}
\vfill
2023-07-04 11:09:35 +02:00
\end { frame}
2023-06-12 13:58:54 +02:00
2023-07-04 11:09:35 +02:00
% >>>>
2023-06-12 13:58:54 +02:00
% >>> End of Slides
%%%%%%%%%%%%%%%
% Backup slides <<<
%%%%%%%%%%%%%%%
\appendix
\begin { frame} [c]
\centering
\Large {
\textcolor { blue} {
Supplemental material
}
}
\end { frame}
\section * { Table of Contents}
\begin { frame} { Table of Contents}
\tableofcontents
\end { frame}
2023-07-06 13:32:02 +02:00
\begin { frame} { Single Sine Timing Result}
\centering
\includegraphics <1>[width=\textwidth ]{ ZH_ simulation/cb_ report_ measured_ antenna_ time_ offsets.py.time-amplitudes.comparison.pdf}
\includegraphics <2>[width=\textwidth ]{ ZH_ simulation/cb_ report_ measured_ antenna_ time_ offsets.py.time-amplitudes.residuals.pdf}
\end { frame}
\section { Airshower}
\begin { frame} { Airshower development}
\begin { figure}
\includegraphics [width=\textwidth] { 1607.08781/fig02a_ airshower+detectors.png}
\imagesource { \arxivcite { Schroder:2016hrv} }
\end { figure}
\end { frame}
\begin { frame} { Radio footprint; GRAND}
\begin { figure}
\includegraphics [width=0.9\textwidth] { grand/GRAND-detection-principle-1.png}
\imagecredit { \arxivcite { GRAND:2018iaj} }
\end { figure}
\end { frame}
\section { Radio Interferometry}
\begin { frame} { Radio Interferometry: Xmax Resolution vs Timing Resolution}
\begin { figure}
\centering
\includegraphics [width=0.7\textwidth] { 2006.10348/fig03_ b.png} %
\imagecredit { \arxivcite { Schoorlemmer:2020low} }
\end { figure}
\end { frame}
\section { Beacon contamination}
\begin { frame} { Sine: Air Shower - Beacon}
\centering
\includegraphics [width=\textwidth] { ZH_ simulation/da_ reconstruction.py.traces.A74.zoomed.peak.Ex.pdf}
\end { frame}
2023-06-12 13:58:54 +02:00
2023-07-06 13:32:02 +02:00
\section { Beacon Pulse}
\begin { frame} { Filter Response and Sampling}
\centering
\includegraphics [width=\textwidth] { pulse/interpolation_ deltapeak+antenna.pdf}
\end { frame}
%\begin{frame}{Hilbert Timing}
% \centering
% \includegraphics[width=\textwidth]{pulse/hilbert_timing_zoom.pdf}
%\end{frame}
\section { Beacon without TX}
\subsection { Pulse}
\begin { frame} { Beacon: Pulse (single baseline)}
\begin { figure}
\includegraphics <1>[width=\textwidth ]{ beacon/field/field_ single_ center_ time.pdf}
\includegraphics <2>[width=\textwidth ]{ beacon/field/field_ single_ left_ time.pdf}
\end { figure}
\end { frame}
\begin { frame} { Beacon: Pulse (3 baselines)}
\begin { figure}
\includegraphics <1>[width=\textwidth ]{ beacon/field/field_ three_ center_ time.pdf}
\includegraphics <2>[width=\textwidth ]{ beacon/field/field_ three_ left_ time.pdf}
\end { figure}
\end { frame}
\begin { frame} { Beacon: Pulse (multi baseline)}
\begin { figure}
\includegraphics <1>[width=\textwidth ]{ beacon/field/field_ square_ ref0_ time.pdf}
\includegraphics <2>[width=\textwidth ]{ beacon/field/field_ square_ all_ time.pdf}
\end { figure}
\end { frame}
\subsection { Sine}
\begin { frame} { Beacon: Sine (single baseline)}
\begin { figure}
\includegraphics <1>[width=\textwidth ]{ beacon/field/field_ single_ center_ phase.pdf}
\includegraphics <2>[width=\textwidth ]{ beacon/field/field_ single_ left_ phase.pdf}
\end { figure}
\end { frame}
\begin { frame} { Beacon: Sine (3 baseline)}
\begin { figure}
\includegraphics <1>[width=\textwidth ]{ beacon/field/field_ three_ center_ phase.pdf}
\includegraphics <2>[width=\textwidth ]{ beacon/field/field_ three_ left_ phase.pdf}
\end { figure}
\end { frame}
\begin { frame} { Beacon: Sine (multi baseline reference antenna)}
\begin { figure}
\includegraphics <1>[width=\textwidth ]{ beacon/field/field_ square_ ref0_ phase.pdf}
%\includegraphics<2>[width=\textwidth]{beacon/field/field_square_ref0_phase_zoomtx.pdf}
\end { figure}
\end { frame}
\begin { frame} { Beacon: Sine (all baselines)}
\begin { figure}
\includegraphics <1>[width=\textwidth ]{ beacon/field/field_ square_ all_ phase.pdf}
%\includegraphics<2>[width=\textwidth]{beacon/field/field_square_all_phase_zoomtx.pdf}
\end { figure}
\end { frame}
\section { Fourier}
\begin { frame} { DTFT vs DFT}
\centering
\includegraphics [width=\textwidth] { methods/fourier/noisy_ spectrum.pdf}
\end { frame}
\begin { frame} { (Discrete) Fourier and Phase}
\begin { equation*}
\hspace { -2em}
u(t) = \exp (i2\pi ft + \phi _ t) \xrightarrow { \mathrm { Fourier\; Transform} } f', \phi _ f
\end { equation*}
\includegraphics [width=\textwidth] { fourier/02-fourier_ phase-f_ max_ showcase.pdf}
\end { frame}
\begin { frame} { Phase reconstruction?}
\begin { figure}
\makebox [\textwidth] [c] { \includegraphics [width=1.4\textwidth] { fourier/02-fourier_ phase-phi_ f_ vs_ phi_ t.pdf} } %
\end { figure}
\begin { block} { }
Phase reconstruction is easy if sample rate ``correct''
\end { block}
\end { frame}
%%%%%%%%%%%%%
\begin { frame} { Phase reconstruction?}
\begin { block} { }
What if sample rate ``incorrect''? \\
\end { block}
\begin { block} <2->{ }
$ \rightarrow $ Linear interpolation ({ \small $ f _ \mathrm { signal } $ , $ f _ \mathrm { max } $ , $ f _ \mathrm { submax } $ , $ \phi _ \mathrm { max } $ and $ \phi _ \mathrm { submax } $ } )
\end { block}
\vspace { 2em}
\begin { figure}
\makebox [\textwidth] [c] {
\includegraphics <1-2>[width=1.4\textwidth ]{ fourier/02-fourier_ phase-phi_ f_ vs_ f_ max_ increasing_ N_ samples.pdf}
\includegraphics <3>[width=1.3\textwidth ]{ fourier/02-fourier_ phase-phase_ reconstruction-unfolded.pdf}
\includegraphics <4>[width=1.3\textwidth ]{ fourier/02-fourier_ phase-phase_ reconstruction-unfolded-zoomed.pdf}
} %
\end { figure}
\end { frame}
%%%%%%%%%%
\section { GNSS clock stability}
\begin { frame} { GNSS clock stability I}
\begin { columns}
\begin { column} { 0.4\textwidth }
\begin { figure}
\centering
\includegraphics [width=0.8\textwidth] { grand/setup/antenna-to-adc.pdf}
\caption {
GRAND Digitizer Unit's ADC to antennae
}
\end { figure}
\end { column}
\hfill
\begin { column} { 0.5\textwidth }
\begin { figure}
\includegraphics [width=\textwidth] { grand/setup/channel-delay-setup.pdf} %
\caption {
Channel filterchain delay experiment
}
\end { figure}
\end { column}
\end { columns}
\end { frame}
\begin { frame} { GNSS filterchain delay experiment}
\begin { columns}
\begin { column} { 0.5\textwidth }
\centering
Pulse
\includegraphics [width=\textwidth] { grand/split-cable/split-cable-delays-ch1ch4.pdf}
\end { column}
\begin { column} { 0.5\textwidth }
\centering
50MHz Sinewave delay(ch1, ch2) = $ 46 \mathrm { ps } \pm 10 $
\includegraphics [width=\textwidth] { grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf}
%\includegraphics[width=\textwidth]{fourier/04_signal_to_noise_fig04.png}
\end { column}
\end { columns}
\end { frame}
\begin { frame} { GNSS clock stability II}
\begin { figure}
\centering
\includegraphics [width=0.7\textwidth] { grand/setup/grand-gps-setup.pdf}
\caption {
GNSS stability experiment
}
\end { figure}
\end { frame}
\subsection { In the field}
\begin { frame} { }
\centering
\includegraphics [width=0.5\textwidth] { images/IMG_ 20220712_ 164912_ grand_ DU.jpg} %
\includegraphics [width=0.5\textwidth] { images/IMG_ 20220712_ 164904_ checking_ gnss.jpg} %
\vfill
\includegraphics [width=0.5\textwidth] { images/IMG_ 20220819_ 152900.jpg} % Outside box Inside Cabling
\includegraphics [width=0.5\textwidth] { images/flir_ 20220812T114019.jpg} % Heat Inside
\end { frame}
\begin { frame} { GNSS clock stability III}
\begin { columns}
\begin { column} { 0.5\textwidth }
\includegraphics [width=\textwidth] { images/IMG_ 20220819_ 154801.jpg} % Closed box outside
\end { column}
\begin { column} { 0.5\textwidth }
\includegraphics [width=\textwidth] { images/IMG_ 20220815_ 161244.jpg} % Open box outside
\end { column}
\end { columns}
\end { frame}
\section { White Rabbit} %<<<
\begin { frame} { Precision Time Protocol}
\begin { itemize}
\item Time synchronisation over (long) distance between (multiple) nodes
\end { itemize}
\begin { figure}
\includegraphics [width=0.4\textwidth] { white-rabbit/protocol/ptpMSGs-color.pdf}
\caption {
\cite { WRPTP}
Precision Time Protocol messages.
}
\end { figure}
\end { frame}
\begin { frame} { White Rabbit}
\begin { columns}
\begin { column} { .5\textwidth }
White Rabbit:
\begin { itemize}
\item SyncE (common oscillator)
\item PTP (synchronisation)
\end { itemize}
\vspace { 2em}
Factors:
\begin { itemize}
\item device ($ \Delta _ { txm } $ , $ \Delta _ { rxs } $ , ...)
\item link ($ \delta _ { ms } $ , ...)
\end { itemize}
\begin { figure}
\makebox [\textwidth] [c] { \includegraphics [width=1.1\textwidth] { white-rabbit/protocol/delaymodel.pdf} }
\imagecredit { \autocite { WRPTP} }
\end { figure}
\end { column}
\begin { column} { .5\textwidth }
\begin { figure}
\makebox [\textwidth] [c] { \includegraphics [width=1.1\textwidth] { white-rabbit/protocol/wrptpMSGs_ 1.pdf} }
\imagecredit { \autocite { WRPTP} }
\end { figure}
\end { column}
\end { columns}
\end { frame}
\begin { frame} { White Rabbit Clock Reference}
\begin { figure}
\centering
\hspace * { -5em}
\includegraphics [width=1.35\textwidth] { clocks/wr-clocks.pdf}
\end { figure}
\end { frame} %>>>
2023-06-12 13:58:54 +02:00
% >>> End of Backup Slides
%%%%%%%%%%%%%%
% Bibliography <<<
%%%%%%%%%%%%%%
\section * { References}
\begin { frame} [allowframebreaks]
\frametitle { References}
\printbibliography
\end { frame}
% >>> Bibliography
\end { document}