m-thesis-documentation/documents/thesis/chapters/introduction.tex

165 lines
4.2 KiB
TeX
Raw Normal View History

% vim: fdm=marker fmr=<<<,>>>
2022-08-24 17:24:49 +02:00
\documentclass[../thesis.tex]{subfiles}
\graphicspath{
{.}
{../../figures/}
{../../../figures/}
}
2022-07-12 04:20:00 +02:00
\begin{document}
\chapter{Introduction}
\label{sec:introduction}
\section{Cosmic Particles}
2022-09-05 18:21:13 +02:00
\label{sec:crs}
Particles from outer space,
Particle type,
Energy,
magnetic fields -- origin,
2023-09-13 17:20:21 +02:00
\hrule
In the beginning of the 20th century, various types of radiation were discovered.
Dubbed ``Cosmic Rays'', one type was determined to come from beyond the atmosphere.
\subsection{Air Showers}
\label{sec:airshowers}
Particle cascades,
Xmax?,
Radio emission,
2023-09-13 17:20:21 +02:00
\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{airshower/shower_development_depth_iron_proton_photon.pdf}
\caption{
From H. Schoorlemmer.
Shower development as a function of atmospheric depth for an energy of $10^{19}\eV$.
}
\label{fig:airshower:depth}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.47\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}%
\end{subfigure}
\hfill
\begin{subfigure}{0.47\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}%
\end{subfigure}
\caption{
From \protect \cite{Schoorlemmer:2012xpa} \protect\cite{Huege:2017bqv}
\protect \Todo{Krijn?}
Radio Emission mechanisms (left: geomagnetic, right: charge-excess)
}
\end{figure}
\subsection{Experiments}
\label{sec:detectors}
2023-09-13 17:20:21 +02:00
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{astroparticle/The_CR_spectrum_2023.pdf}
\caption{
From \protect \cite{The_CR_spectrum}.
Cosmic Ray flux as a function of energy-per-nucleon.
}
\label{fig:cr_flux}
\end{figure}
Cosmic particles have been observed over a large range of energies.
However, for increasing energies, their flux decreases dramatically (see Figure~\ref{fig:cr_flux}).
To gather decent statistics at these highest energies on a practical timescale, observatories therefore have to span huge areas.
\\
\hrule
2022-09-05 19:21:51 +02:00
Standalone devices,
2023-09-13 17:20:21 +02:00
\gls*{Auger},
AugerPrime RD,
\gls*{GRAND},
\gls*{LOFAR}?,
2022-09-05 19:21:51 +02:00
2023-09-13 17:20:21 +02:00
\section{Radio Interferometry}
2022-09-05 19:21:51 +02:00
\label{sec:interferometry}
Rough outline of Interferometry?
\\
\begin{figure}
2023-09-13 17:20:21 +02:00
\centering
\includegraphics[width=0.5\textwidth]{radio_interferometry/rit_schematic_true.pdf}%
% \includegraphics[width=0.5\textwidth]{radio_interferometry/Schematic_RIT_extracted.png}
% \caption{From H. Schoorlemmer}
\end{figure}
\begin{equation}\label{eq:propagation_delay}%<<<
\Delta_i(\vec{x}) = \frac{ \left|{ \vec{x} - \vec{a_i} }\right| }{c} n_{eff}
\end{equation}%>>>
2022-09-05 19:21:51 +02:00
\begin{equation}\label{eq:interferometric_sum}%<<<
S(\vec{x}, t) = \sum_i S_i(t + \Delta_i(\vec{x}))
\end{equation}%>>>
\begin{figure}
2023-09-13 17:20:21 +02:00
\centering
\begin{subfigure}[t]{0.3\textwidth}
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_bad.png}
\label{fig:trace_overlap:bad}
\end{subfigure}
\hfill
\begin{subfigure}[t]{0.3\textwidth}
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_medium.png}
\label{fig:trace_overlap:medium}
\end{subfigure}
\hfill
\begin{subfigure}[t]{0.3\textwidth}
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png}
\label{fig:trace_overlap:best}
\end{subfigure}
2023-09-13 17:20:21 +02:00
\caption{
Trace overlap due to wrong positions
}
\label{fig:trace_overlap}
\end{figure}
2023-09-13 17:20:21 +02:00
\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}%
\caption{
From \protect \cite{Schoorlemmer:2020low}.
$\Xmax$ resolution as a function of detector-to-detector synchronisation.
}
\label{fig:xmax_synchronise}
\end{figure}
\section{Time Synchronisation}
\label{sec:timesynchro}
The main method of synchronising multiple stations is by employing a \gls{GNSS}.
This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}).
\\
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
2023-09-13 17:20:21 +02:00
%\begin{figure}
% \centering
% \includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
% \caption{
% Using a reference clock to compare two other clocks.
% \protect \todo{
% redo figure with less margins,
% remove spines,
% rotate labels
% }
% }
% \label{fig:reference-clock}
%\end{figure}
2022-07-12 04:20:00 +02:00
\end{document}