The idea of a beacon is semi-analogous to an oscillator in electronic circuits.
A periodic signal is sent out from a transmitter (the oscillator), and captured by an antenna (the chip the oscillator drives).
In a digital circuit, the oscillator often emits a discrete (square wave) signal (see Figure~\ref{fig:beacon:ttl}).
A tick is then defined as the moment that the signal changes from high to low or vice versa.
In this scheme, synchronising requires latching on the change very precisely.
As between the ticks, there is no time information in the signal.
\\
Instead of introducing more ticks in the same time, and thus a higher frequency of the oscillator, a smooth continous signal can also be used.
This enables the opportunity to determine the phase of the signal by measuring the signal at some time interval.
This time interval has an upper limit on its size depending on the properties of the signal, such as its frequency, but also on the length of the recording.
In Figure~\ref{fig:beacon:sine}, both sampling~1~and~2 can reconstruct the sine wave from the measurements.
To setup a time synchronising system for airshower measurements, actually only the high frequency part of the beacon must be employed.
The low frequency part, from which the number of oscillations of the high frequency part are counted, is supplied be the very airshower that is measured.
Since the signal is an electromagntic wave, its phase velocity $v$ depends on the refractive index~$n$ as