A problem with a continuous beacon is resolving the period multiplicity $\Delta k_{ij}$ in \eqref{eq:synchro_mismatch_clocks_periodic}.
\Todo{copy equation here}
It can be resolved by declaring a shared time $\tTrueEmit$ common to the stations in some fashion (e.g.~a~pulse), and counting the cycles since $\tTrueEmit$ per station.
\\
\bigskip
% Same transmitter / Static setup
When the signal defining $\tTrueEmit$ is emitted from the same transmitter that sends out the beacon signal, the number of periods $k$ can be obtained directly from the signal.
If, however, this calibration signal is sent from a different location, the time delays for this signal are different from the time delays for the beacon.
In a static setup, these distances should be measured to have a time delay accuracy of less than one period of the beacon signal.\todo{reword sentence}
\\
\bigskip
% Dynamic setup
If measuring the distances to the required accuracy is not possible, a different method must be found to obtain the correct number of periods.
The total time delay in \eqref{eq:phase_diff_to_time_diff} contains a continuous term $\Delta t_\phase$ that can be determined from the beacon signal, and a discrete term $k T$ where $k$ is the unknown discrete quantity.
\\
Since $k$ is discrete, the best time delay might be determined from the calibration signal by calculating the correlation for discrete time delays $kT$.
Lifting period degeneracy ($k=n-m=7$ periods) using the optimal overlap between impulsive signals.
}
\label{fig:beacon_sync:period_alignment}
\end{subfigure}
\caption{
Synchronisation scheme for two antennas using a continuous beacon and an impulsive signal, each emitted from a separate transmitter.
Grey dashed lines indicate periods of the beacon (orange),
full lines indicate the time of the impulsive signal (blue).
\\
Middle panel: The beacon allows to resolve a small timing delay ($\Delta t_\phase$).
\\
Lower panel: Expecting the impulsive signals to come from the same source, the overlap between the two impulsive signals is used to lift the period degeneracy ($k=n-m$).