mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-11-23 07:23:32 +01:00
184 lines
5.6 KiB
TeX
184 lines
5.6 KiB
TeX
|
% vim: fdm=marker fmr=<<<,>>>
|
||
|
\documentclass[../thesis.tex]{subfiles}
|
||
|
|
||
|
\graphicspath{
|
||
|
{.}
|
||
|
{../../figures/}
|
||
|
{../../../figures/}
|
||
|
}
|
||
|
|
||
|
\begin{document}
|
||
|
\section{Random Phasor Distribution}
|
||
|
|
||
|
In the following, this aspect is shortly described in terms of two frequency-domain phasors;
|
||
|
the noise phasor written as $\vec{m} = a \, e^{i\pTrue}$ with phase $-\pi < \pTrue \leq \pi$ and amplitude $a \geq 0$,
|
||
|
and the signal phasor written as $\vec{s} = s \, e^{i\pTrue_s}$, but rotated such that its phase $\pTrue_s = 0$.
|
||
|
\Todo{reword; phasor vs plane wave}
|
||
|
Further reading can be found in Ref.~\cite{goodman1985:2.9}.
|
||
|
\\
|
||
|
|
||
|
% Phasor concept
|
||
|
\begin{figure}
|
||
|
\label{fig:phasor}
|
||
|
\caption{
|
||
|
Phasors picture
|
||
|
}
|
||
|
\end{figure}
|
||
|
|
||
|
\bigskip
|
||
|
|
||
|
% Noise phasor description
|
||
|
The noise phasor is fully described by the joint probability density function
|
||
|
\begin{equation}
|
||
|
\label{eq:noise:pdf:joint}
|
||
|
\phantom{,}
|
||
|
p_{A\PTrue}(a, \pTrue; \sigma)
|
||
|
=
|
||
|
\frac{a}{s\pi\sigma^2} e^{-\frac{a^2}{2\sigma^2}}
|
||
|
,
|
||
|
\end{equation}
|
||
|
for $-\pi < \pTrue \leq \pi$ and $a \geq 0$.
|
||
|
\\
|
||
|
|
||
|
Integrating \eqref{eq:noise:pdf:joint} over the amplitude $a$, it follows that the phase is uniformly distributed.
|
||
|
|
||
|
Likewise, the amplitude follows a Rayleigh distribution
|
||
|
\begin{equation}
|
||
|
\label{eq:noise:pdf:amplitude}
|
||
|
%\label{eq:pdf:rayleigh}
|
||
|
\phantom{,}
|
||
|
p_A(a; \sigma)
|
||
|
%= p^{\mathrm{RICE}}_A(a; \nu = 0, \sigma)
|
||
|
= \frac{a}{\sigma^2} e^{-\frac{a^2}{2\sigma^2}}
|
||
|
,
|
||
|
\end{equation}
|
||
|
for which the mean is $\bar{a} = \sigma \sqrt{\frac{\pi}{2}}$ and the standard~deviation is given by $\sigma_{a} = \sigma \sqrt{ 2 - \tfrac{\pi}{2} }$.
|
||
|
|
||
|
\begin{figure}
|
||
|
\begin{subfigure}{0.45\textwidth}
|
||
|
\includegraphics[width=\textwidth]{beacon/pdf_noise_phase.pdf}
|
||
|
\caption{
|
||
|
The phase of the noise is uniformly distributed.
|
||
|
}
|
||
|
\label{fig:noise:pdf:phase}
|
||
|
\end{subfigure}
|
||
|
\hfill
|
||
|
\begin{subfigure}{0.45\textwidth}
|
||
|
\includegraphics[width=\textwidth]{beacon/pdf_noise_amplitude.pdf}
|
||
|
\caption{
|
||
|
The amplitude of the noise is Rayleigh distribution \eqref{eq:noise:pdf:amplitude}.
|
||
|
}
|
||
|
\label{fig:noise:pdf:amplitude}
|
||
|
\end{subfigure}
|
||
|
\caption{
|
||
|
Marginal distribution functions of the noise phasor.
|
||
|
\Todo{expand captions}
|
||
|
Rayleigh and Rice distributions.
|
||
|
}
|
||
|
\label{fig:noise:pdf}
|
||
|
\end{figure}
|
||
|
|
||
|
\bigskip
|
||
|
|
||
|
% Random phasor sum
|
||
|
|
||
|
In this work, the addition of the signal phasor to the noise phasor will be named ``Random Phasor Sum''.
|
||
|
The addition shifts the mean in \eqref{eq:noise:pdf:joint}
|
||
|
from $\vec{a}^2 = a^2 {\left( \cos \pTrue + \sin \pTrue \right)}^2$
|
||
|
to ${\left(\vec{a} - \vec{s}\right)}^2 = {\left( a \cos \pTrue -s \right)}^2 + {\left(\sin \pTrue \right)}^2$
|
||
|
,
|
||
|
resulting in a new joint distribution
|
||
|
\begin{equation}
|
||
|
\label{eq:phasor_sum:pdf:joint}
|
||
|
\phantom{.}
|
||
|
p_{A\PTrue}(a, \pTrue; s, \sigma)
|
||
|
= \frac{a}{2\pi\sigma^2}
|
||
|
\exp[ -
|
||
|
\frac{
|
||
|
{\left( a \cos \pTrue - s \right)}^2
|
||
|
+ {\left( a \sin \pTrue \right)}^2
|
||
|
}{
|
||
|
2 \sigma^2
|
||
|
}
|
||
|
]
|
||
|
.
|
||
|
\end{equation}
|
||
|
\\
|
||
|
|
||
|
Integrating \eqref{eq:phasor_sum:pdf:joint} over $\pTrue$ one finds
|
||
|
a Rice (or Rician) distribution for the amplitude,
|
||
|
\begin{equation}
|
||
|
\label{eq:phasor_sum:pdf:amplitude}
|
||
|
%\label{eq:pdf:rice}
|
||
|
\phantom{,}
|
||
|
p_A(a; s, \sigma)
|
||
|
= \frac{a}{\sigma^2}
|
||
|
\exp[-\frac{a^2 + s^2}{2\sigma^2}]
|
||
|
\;
|
||
|
I_0\left( \frac{a s}{\sigma^2} \right)
|
||
|
,
|
||
|
\end{equation}
|
||
|
where $I_0(z)$ is the modified Bessel function of the first kind with order zero.
|
||
|
|
||
|
For the Rician distribution, two extreme cases can be highlighted (as can be seen in Figure~\ref{fig:phasor_sum:pdf:amplitude}).
|
||
|
In the case of a weak signal ($s \ll a$), \eqref{eq:phasor_sum:pdf:amplitude} behaves as a Rayleigh distribution~\eqref{eq:noise:pdf:amplitude}.
|
||
|
Meanwhile, it approaches a gaussian distribution around $s$ when a strong signal ($s \gg a$) is presented.
|
||
|
|
||
|
\begin{equation}
|
||
|
\label{eq:strong_phasor_sum:pdf:amplitude}
|
||
|
p_A(a; \sigma) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{{\left(a - s\right)}^2}{2\sigma^2}]
|
||
|
\end{equation}
|
||
|
|
||
|
\begin{figure}
|
||
|
\begin{subfigure}{0.45\textwidth}
|
||
|
\includegraphics[width=\textwidth]{beacon/pdf_phasor_sum_phase.pdf}
|
||
|
\caption{
|
||
|
The Random Phasor Sum phase distribution \eqref{eq:phasor_sum:pdf:phase}.
|
||
|
}
|
||
|
\label{fig:phasor_sum:pdf:phase}
|
||
|
\end{subfigure}
|
||
|
\hfill
|
||
|
\begin{subfigure}{0.45\textwidth}
|
||
|
\includegraphics[width=\textwidth]{beacon/pdf_phasor_sum_amplitude.pdf}
|
||
|
\caption{
|
||
|
The Random Phasor Sum amplitude distribution \eqref{eq:phasor_sum:pdf:amplitude}.
|
||
|
}
|
||
|
\label{fig:phasor_sum:pdf:amplitude}
|
||
|
\end{subfigure}
|
||
|
\caption{
|
||
|
A signal phasor's amplitude in the presence of noise will follow a Rician distribution.
|
||
|
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution.
|
||
|
\Todo{expand captions}
|
||
|
}
|
||
|
\label{fig:phasor_sum:pdf}
|
||
|
\end{figure}
|
||
|
|
||
|
\bigskip
|
||
|
Like the amplitude distribution \eqref{eq:phasor_sum:pdf:amplitude}, the marginal phase distribution of \eqref{eq:phasor_sum:pdf:joint} results in two extremes cases;
|
||
|
weak signals correspond to the uniform distribution for \eqref{eq:noise:pdf:joint}, while strong signals are well approximated by a gaussian distribution.
|
||
|
|
||
|
The analytic form takes the following complex expression,
|
||
|
\begin{equation}
|
||
|
\label{eq:phase_pdf:random_phasor_sum}
|
||
|
p_\PTrue(\pTrue; s, \sigma) =
|
||
|
\frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi }
|
||
|
+
|
||
|
\sqrt{\frac{1}{2\pi}}
|
||
|
\frac{s}{\sigma}
|
||
|
e^{-\left( \frac{s^2}{2\sigma^2}\sin^2{\pTrue} \right)}
|
||
|
\frac{\left(
|
||
|
1 + \erf{ \frac{s \cos{\pTrue}}{\sqrt{2} \sigma }}
|
||
|
\right)}{2}
|
||
|
\cos{\pTrue}
|
||
|
\end{equation}
|
||
|
where
|
||
|
\begin{equation}
|
||
|
\label{eq:erf}
|
||
|
\phantom{,}
|
||
|
\erf{\left(z\right)} = \frac{2}{\sqrt{\pi}} \int_0^z \dif{t} e^{-t^2}
|
||
|
,
|
||
|
\end{equation}
|
||
|
is the error function.
|
||
|
|
||
|
\end{document}
|