m-thesis-documentation/figures/beacon/src/beacon_field.py

295 lines
8.4 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
__doc__ = \
"""
Generate a figure showing a value combining
the delays between a transmitter and a set of antennas
"""
import matplotlib.pyplot as plt
import numpy as np
from itertools import chain, combinations, product
c_light = 3e8
f_beacon = 50e6
class Antenna:
"""
Simple Antenna class
"""
def __init__(self,x=0,y=0,z=0,t0=0,name=""):
self.x = x
self.y = y
self.z = z
self.t = t0
self.name = name
def __repr__(self):
cls = self.__class__.__name__
return f'{cls}(x={self.x!r},y={self.y!r},z={self.z!r},t0={self.t!r},name={self.name!r})'
def phase_mod(phase, low=np.pi):
"""
Modulo phase such that it falls within the
interval $[-low, 2\pi - low)$.
"""
return (phase + low) % (2*np.pi) - low
def dist(a,b):
return ((a.x-b.x)**2+(a.y-b.y)**2+(a.z-b.z)**2)**0.5
def phase(a,b,f=f_beacon,wrap=False):
t = dist(a,b)/c_light
phase = t*f*2*np.pi
if wrap:
phase = phase_mod(phase)
return phase
def grid_plot(grid, ax=None, **plot_kwargs):
if ax is None:
ax = plt.gca()
2022-10-05 18:59:35 +02:00
if not grid:
return
x = [a.x for a in grid]
y = [a.y for a in grid]
l = [a.name for a in grid]
ax.plot(x,y,'kx', **plot_kwargs)
for x_,y_,l_ in zip(x,y,l):
ax.annotate(l_,(x_,y_))
def antenna_combinations(ants, ref_ant=None):
if ref_ant is not None: # use only one reference antenna for the baselines
ref = ref_ant
ant_combi = [ (ref, j) for j in ants if j is not ref ]
else: # use all baselines
ant_combi = combinations(ants, 2)
return list(ant_combi)
def calculate_field(field, tx, ant_combi, ref_ant=None, calculate_phase=True):
if plot_phase:
p_ij = [ (phase(tx,i) - phase(tx,j)) for i,j in ant_combi ]
else:
t_ij = [ (dist(tx,i) - dist(tx, j))/c_light for i,j in ant_combi ]
val = []
xx = []
yy = []
xs = field[0]
ys = field[1]
for x in xs:
for y in ys:
tx_t = Antenna(x=x,y=y)
if plot_phase: # phase
dp_ij = np.array([ (phase(tx_t,i) - phase(tx_t,j)) - p_ij[k] for k,(i,j) in enumerate(ant_combi) ])
if True: # phase wrap
dp_ij = phase_mod(dp_ij)
val.append(np.sum(dp_ij**2)**0.5)
else: # time
dt_ij = np.array([ (dist(tx_t,i) - dist(tx_t, j))/c_light - t_ij[k] for k,(i,j) in enumerate(ant_combi) ])
val.append(np.sum(dt_ij**2)**0.5)
xx.append(x)
yy.append(y)
return np.array(xx), np.array(yy), np.array(val)
def plot_field(
tx, ants, xx, yy, val,
ref_ant=None, plot_phase=None, mask=None,
color_label='$\\left( t - \\tau \\right)^2$',
ax=None, bin_type='square', colorbar=True,
**scatter_kwargs
):
if ax is None:
ax = plt.gca()
default_scatter_kwargs = {}
default_scatter_kwargs['cmap'] = 'Spectral_r'
if mask is not None:
val[mask] = np.nan
if plot_phase is None:
pass
elif plot_phase:
default_scatter_kwargs['vmax'] = len(ants)*np.pi
pass
scatter_kwargs = {**default_scatter_kwargs, **scatter_kwargs}
2022-10-05 18:59:35 +02:00
if tx or ants:
grid_plot([tx] + ants, ax=ax)
if ref_ant is not None:
ax.set_title("Single baseline\n reference antenna={}, f={}MHz".format(ref_ant.name, f_beacon/1e6))
else:
ax.set_title("All baselines\n f={} MHz".format(f_beacon/1e6))
if bin_type == 'hex': # hexbin
sc = ax.hexbin(xx, yy, C=val, **scatter_kwargs)
elif bin_type == 'square': # squarebinning
_, _, _, sc = ax.hist2d(xx, yy, weights=val, bins=int(len(xx)**0.5), **scatter_kwargs)
else: # overlayed markers
sc = ax.scatter(xx,yy,c=val, **scatter_kwargs)
if colorbar:
fig = ax.get_figure()
fig.colorbar(sc, ax=ax, label=color_label)
return ax
def square_grid(dx=1, N_x=10, dy=None, N_y=None, x_start=0, y_start=0):
N_y = N_x if N_y is None else N_y
dy = dx if dy is None else dy
return product(
(x_start + n*dx for n in range(N_x)),
(y_start + n*dy for n in range(N_y)),
)
def triangular_grid(dx=1, N_x=10, dy=None, N_y=None, x_start=0, y_start=0):
return chain(
square_grid(dx=dx,dy=dy,N_x=N_x,N_y=N_y,x_start=x_start,y_start=y_start),
square_grid(dx=dx,dy=dy,N_x=N_x,N_y=N_y,x_start=x_start + dx/2,y_start=y_start + dy/2),
)
if __name__ == "__main__":
from argparse import ArgumentParser
import os.path as path
parser = ArgumentParser(description=__doc__)
parser.add_argument("fname", metavar="path/to/figure[/]", nargs="?", help="Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown.")
parser.add_argument("type", choices=['single-left', 'single-center', 'square', 'tri', 'preset'])
command_group = parser.add_mutually_exclusive_group(required=True)
command_group.add_argument('--time', help='Use the time difference for the field', action='store_false')
command_group.add_argument('--phase', help='Use wrapped phase for the field', action='store_true')
2022-10-05 19:05:19 +02:00
parser.add_argument('--ref', dest='ref_ant', metavar='ref_antenna', type=int, help='Number of antenna to use as reference')
args = parser.parse_args()
if args.fname is not None and path.isdir(args.fname):
args.fname = path.join(args.fname, path.splitext(path.basename(__file__))[0] + ".pdf")
args.plot_phase = args.phase or args.time
del args.time, args.phase
if 'single' in args.type: # single baseline
### Field
x_low, x_high, N_x = -300, 300, 151
y_low, y_high, N_y = -300, 300, 151
### Geometry
ants = [
Antenna(x=-50,y=0,z=0,name="a"),
Antenna(x=50,y=0,z=0,name="b"),
]
if args.type == 'single-center':
tx = Antenna(x=-000,y=200,z=0,name="tx")
else:
tx = Antenna(x=-200,y=200,z=0,name="tx")
elif args.type == 'square' or args.type == 'tri': # from grid definition
### Field
x_low, x_high, N_x = -1800, 1800, 261
y_low, y_high, N_y = -x_low, -x_high, N_x
### Geometry
tx = Antenna(x=-800,y=300,z=0,name="tx")
x_start, dx, ant_N_x = 0, 50, 2
y_start, dy, ant_N_y = 0, dx, ant_N_x
if args.type == 'square': # square grid
grid_func = square_grid
elif args.type == 'tri': # triangular
grid_func = triangular_grid
grid = grid_func(dx=dx, dy=dy, N_x=ant_N_x, N_y=ant_N_y, x_start=x_start, y_start=y_start)
ants = [ Antenna(x=x,y=y,z=0,name=i) for i, (x,y) in enumerate(grid) ]
else:
### Field
x_low, x_high, N_x = -400, 400, 161
y_low, y_high, N_y = -x_low, -x_high, N_x
### Geometry
tx = Antenna(x=-300,y=300,z=0,name="tx")
ants = [
Antenna(x=100,y=0,z=0,name="a"),
Antenna(x=0,y=-50,z=0,name="b"),
Antenna(x=+50,y=-180,z=0,name="c"),
Antenna(x=125,y=180,z=0,name="d"),
]
###
### Options
###
plot_phase = args.plot_phase
2022-10-05 19:05:19 +02:00
if args.ref_ant:
ref_ant = ants[args.ref_ant]
else:
ref_ant = None
ant_combi = antenna_combinations(ants, ref_ant=ref_ant)
xs = np.linspace(x_low, x_high, N_x)
ys = np.linspace(y_low, y_high, N_y)
xx, yy, val = calculate_field((xs, ys), tx, ant_combi, calculate_phase=plot_phase)
kwargs = {}
mask = None
if plot_phase:
color_label='$\\sqrt{ \\sum \\left(\\varphi(x) - \\Delta \\varphi\\right)^2}$'
mask = abs(val) > np.pi
else:
color_label='$\\sqrt{ \\sum \\left(t(x) - \\Delta t\\right)^2}$ [ns]'
val *= 1e9
kwargs['vmax'] = 100
if not True:
mask = abs(val) > 1.1*kwargs['vmax']
if mask is not None:
ax = plot_field([], [], xx, yy, val, cmap='Greys', colorbar=False)
ax = plot_field(tx, ants, xx, yy, val, ref_ant=ref_ant, mask=mask, color_label=color_label, **kwargs)
# if plot_phase:
# N_lowest = np.min(len(ant_combi)-1, 10)
# lowest_idx = np.argpartition(val, N_lowest)[:N_lowest]
#
# print(lowest_idx)
# print(val[lowest_idx])
# print( list(zip(np.array(xx)[lowest_idx], np.array(yy)[lowest_idx])) )
if args.fname is not None:
plt.savefig(args.fname)
else:
plt.show()