% systematic delays important to obtain the best synchronisation
The beacon synchronisation strategy hinges on the ability to measure the beacon signal with sufficient timing accuracy.
In the previous chapters, the overall performance of this strategy has been explored by using simulated waveforms.
\\
% ADC and filtering setup most important component.
As mentioned in Chapter~\ref{sec:waveform}, the measured waveforms of a true detector will be influenced by characteristics of the antenna, the filter and the \gls{ADC}.
Especially the filter and \gls{ADC} are important components to be characterised to compensate for possible systematic (relative) delays.
%The \gls{DU} timestamps an event using a combination of the 1\gls{PPS} of a Trimble ICM 360 \gls{GNSS} chip\Todo{ref?} and counting the local oscillator running at $500\MHz$.
%At trigger time, the counter value is stored to obtain a timing accuracy of roughly $2\ns$.
%The counter is also used to correct for fluctuating intervals of the 1\gls{PPS} by storing and resetting it at each incoming 1\gls{PPS}.
Two \gls{DU}-channels receive the same signal from a signal generator where one of the channels takes an extra time delay $\Delta t_\mathrm{cable}$ due to extra cable length.
In this ``forward'' setup, both channels are read out at the same time, and a time delay is derived from the channels' traces.
The sum of the ``forward'' and ``backward'' time delays gives twice the relative time delay $\Delta t$ without needing to measure the time delays due to the cable lengths $t_\mathrm{cable}$ separately since
% Total and Filterchain Time Delays between \subref{fig:channel-delays:1,2} channels 1 and 2, and \subref{fig:channel-delays:2,4} 2 and 4.
% Dark grey vertical lines indicate the maximum measurable time delay per frequency.
% \protect \Todo{
% y-axes,
% larger text
% }
% }
% \label{fig:channel-delays}
%\end{figure}% >>>>
%
%Figure~\ref{fig:channel-delays} shows that in general the relative filterchain time delays are below $0.05\ns$, with exceptional time delays upto $0.2\ns$ between channels 2 and 4.