The continuous formulation of the \acrlong{FT} takes the following form,
\begin{equation}
\label{eq:fourier}
\phantom{.}
X(f) = \int_\infty^\infty\dif{t}\, x(t)\, e^{-i 2 \pi f t}
.
\end{equation}
It decomposes the signal $x(t)$ into complex-valued plane waves $X(f)$ of frequency $f$.
When $x(t)$ is sampled at discrete times, the integral of \eqref{eq:fourier} is discretized in time to result in the \acrlong{DTFT}:
\begin{equation}
%\tag{DTFT}
\label{eq:fourier:dtft}
X(f) = \sum_{n=0}^{N-1} x(t[n])\, e^{ -i 2 \pi f t[n]}
\end{equation}
where $x(t)\in\mathcal{R}$ is sampled at times $t[n]$.
Considering a finite sampling size $N$ and periodicity of the signal, the bounds of the integral in \eqref{eq:fourier} collapse to $t[0]$ up to $t[N]$.
\\
From this it follows that the lowest resolvable frequency is $f_\mathrm{lower}=\tfrac{1}{T}=\tfrac{1}{t[N]- t[0]}$.
\\
Additionally, when the sampling of $x(t)$ is equally spaced, the $t[n]$ terms can be written as a sequence, $t[n]- t[0]= n \Delta t =\tfrac{n}{f_s}$, with $f_s$ the sampling frequency.
The highest resolvable frequency, known as the Nyquist frequency, is limited by this sampling frequency as $f_\mathrm{nyquist}=\tfrac{f_s}{2}$.
\\
% DFT sampling of DTFT / efficient multifrequency FFT
Implementing the above decomposition of $t[n]$, \eqref{eq:fourier:dtft} can be rewritten in terms of multiples $k$ of the sampling frequency, becoming the \acrlong{DFT}
For integer $0\leq k < N $, efficient algorithms exist that derive all $X(0\leq k < N )$ in $\mathcal{O}( N \log N )$ calculations, a~\acrlong{FFT}, sampling a subset of the frequencies.\Todo{citation?}
Note the factor $2$ in the definition of the amplitude in \eqref{eq:complex_magnitude}.
It is introduced to compensate for expecting a real input signal $x(t)$ and mapping negative frequencies to their positive equivalents.
\\
% Recover A\cos(2\pi t[n] f + \phi) using above definitions
Applying \eqref{eq:fourier:dtft_decomposed} to a signal $x(t)= A\cos(2\pi t[n] f +\pTrue)$ with the above definitions obtains
an amplitude $A$ and phase $\pTrue$ at frequency $f$.
When the minus sign in the exponent of \eqref{eq:fourier} is not taken into account, the calculated phase in \eqref{eq:complex_phase} will have an extra minus sign.