diff --git a/presentations/2023-07-06_final_masters/2023-Masters.tex b/presentations/2023-07-06_final_masters/2023-Masters.tex index 12c82de..e1cc2c5 100644 --- a/presentations/2023-07-06_final_masters/2023-Masters.tex +++ b/presentations/2023-07-06_final_masters/2023-Masters.tex @@ -8,14 +8,17 @@ %%%%%%%%%%%%%%% \usepackage[british]{babel} +\usepackage{csquotes} \usepackage{amsmath} \usepackage{hyperref} -\usepackage[backend=bibtex,style=trad-plain]{biblatex} +\usepackage[backend=bibtex,style=numeric,maxnames=1]{biblatex} \usepackage{appendixnumberbeamer} \usepackage{graphicx} \usepackage{tikz} \usepackage{xurl} \usepackage{physics} +\usepackage{cancel} +\usepackage{multicol} \graphicspath{{.}{./figures/}{../../figures/}} \usepackage{todo} @@ -25,7 +28,7 @@ \DeclareCiteCommand{\arxivcite} {\usebibmacro{prenote}} {\usebibmacro{citeindex}% - \usebibmacro{cite} + [\usebibmacro{cite}] \newunit \clearfield{eprintclass} \usebibmacro{eprint}} @@ -34,7 +37,7 @@ \newcommand{\imagesource}[1]{~\\[0pt]\vspace*{-7pt}\hspace*{10pt}{\tiny#1}} \newcommand{\imagecredit}[1]{\imagesource{Credit:\thinspace#1}} -\newcommand{\imagecite}[1]{\imagesource{\arxivcite{#1}}} +%\newcommand{\imagecite}[1]{\imagesource{\arxivcite{#1}}} % Disable Captions \setbeamertemplate{caption}{\raggedright\small\insertcaption\par} @@ -118,6 +121,7 @@ % >>> Meta data \newcommand{\tclock}{\ensuremath{t_\mathrm{clock}}} +\newcommand{\tClock}{\tclock} \newcommand{\ns}{\ensuremath{\mathrm{ns}}} \newcommand{\pTrue}{\phi} @@ -148,26 +152,90 @@ %%%%%%%%%%%%%%% % Start of slides <<< %%%%%%%%%%%%%%% -\section{Cosmic Particle Detection}% <<<< +\section{Cosmic Particles Detection}% <<<< % Sources, Types, Propagation, Observables % Flux -> Large instrumentation area % Detection methods of Auger % - FD, SD % AERA / AugerPrime RD or GRAND \begin{frame}{Ultra High Energy particles} + \begin{figure} + \centering + \includegraphics[width=0.9\textwidth]{astroparticle/bk978-0-7503-2344-4ch1f2_hr.jpg}% + \imagecredit{Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC} + \end{figure} \end{frame} +\begin{frame}{Ultra High Energy particle flux} + \begin{columns} + \begin{column}{0.6\textwidth} + \begin{figure} + \centering + %\includegraphics[width=0.7\textwidth]{astroparticle/cr_flux_PDG_2023.pdf}% + \includegraphics[width=\textwidth]{astroparticle/spectrum.png}% + \imagecredit{\nocite{PDG2022}Particle Data Group} + \end{figure} + \end{column} + \begin{column}{0.5\textwidth} + Large Area Experiments:\\ + %\begin{multicols}{2} + \begin{itemize} + \item Pierre Auger Observatory + \item Giant Radio Array for Neutrino Detection + \end{itemize} + \vfill + \begin{figure} + \includegraphics[width=\textwidth]{images/A-schematic-of-the-Pierre-Auger-Observatory-where-each-black-dot-is-a-water-Cherenkov.png} + \imagecredit{\href{https://www.researchgate.net/figure/A-schematic-of-the-Pierre-Auger-Observatory-where-each-black-dot-is-a-water-Cherenkov_fig1_319524774}{Hans O. Klages}} + \end{figure} + %\end{multicols} + \end{column} + \end{columns} +\end{frame} + + \begin{frame}{Air Showers} % Observables +% \begin{columns} +% \begin{column}{0.45\textwidth} +% \begin{figure} +% \includegraphics[width=\textwidth]{airshower/shower_development_depth_iron_proton_photon_with_muons.pdf} +% \imagecredit{H. Schoorlemmer} +% \end{figure} +% \end{column} +% \hfill +% \begin{column}{0.45\textwidth} +% \end{column} +% \end{columns} + \begin{figure} + \hspace*{-2em} + \centering + \includegraphics[width=1.13\textwidth]{airshower/Auger_ScreenShot_GoldenHybrid1_shower_SD_FD.png} + \imagesource{From:~\url{https://opendata.auger.org/display.php?evid=172657447200}} + \end{figure} \end{frame} -\begin{frame}{UHE particle flux} -\end{frame} - -\begin{frame}{Detection methods} -\end{frame} - -\begin{frame}{Radio Emission} +\begin{frame}{Air Shower Radio Emission} + \begin{columns} + \begin{column}{0.45\textwidth} + \begin{figure} + \includegraphics[width=\textwidth]{airshower/shower_development_depth_iron_proton_photon.pdf} + \imagecredit{H. Schoorlemmer} + \end{figure} + \end{column} + \hfill + \begin{column}{0.545\textwidth} + \begin{figure} + \centering + Charge excess + \includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}\\% + \vspace*{2em} + Geomagnetic + \includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}% + \imagesource{\arxivcite{Huege:2017bqv}} + \end{figure} + \end{column} + \end{columns} \end{frame} @@ -212,20 +280,40 @@ \begin{figure} \centering \includegraphics[width=0.7\textwidth]{2006.10348/fig01.png}% - \imagecite{Schoorlemmer:2020low} + \imagesource{\arxivcite{Schoorlemmer:2020low}} \end{figure} \end{frame} % >>>> -\section{Timing in Radio Detectors}% <<<< +\section{Timing in Air Shower Radio Detectors}% <<<< % GNSS % reference system: White Rabbit, AERA beacon, (ADS-B?) % GRAND setup and measurements -\begin{frame}{Timing in Radio Detectors: GNSS} +\begin{frame}{Timing in Air Shower Radio Detectors} % Geometry - Default Timing mechanism: Global Navigation Satellite Systems\\ + Relative timing is important for Radio Interferometry. {\small ($ 1\ns\, @ c \sim 30\mathrm{cm}$)}\\ + \vspace*{1em} + Large inter-detector spacing ($\sim 1\mathrm{km}$)\\ + $\mapsto$ Default timing mechanism: Global Navigation Satellite Systems\\ + \vspace*{1em} + What is the accuracy of such systems?\\ + \visible<2>{ + \quad @Auger: $\sigma_t \gtrsim 10\ns$ + } + \vfill \begin{columns} - \begin{column}{0.5\textwidth} + \begin{column}{0.45\textwidth} + \begin{figure} + \visible<2>{ + \centering + \includegraphics[width=\textwidth]{gnss/auger/1512.02216.figure3.gnss-time-differences.png} + \vspace*{-1em} + \imagesource{\arxivcite{PierreAuger:2015aqe}} + } + \end{figure} + \end{column} + \hfill + \begin{column}{0.5\textwidth}%<<< \vfill \begin{figure} \begin{tikzpicture}[scale=1] @@ -235,56 +323,87 @@ \end{tikzpicture} \imagecredit{H. Schoorlemmer} \end{figure} - \end{column} - \hfill - \begin{column}{0.45\textwidth} - In AERA, $ \Delta \tclock \gtrsim 10\ns$ - \\ - \begin{figure} - \centering - \includegraphics[width=\textwidth]{gnss/auger/1512.02216.figure3.gnss-time-differences.png} - \imagecite{PierreAuger:2015aqe} - \end{figure} - \end{column} + \end{column}%>>> \end{columns} \end{frame} -% >>>> -\section{Beacon Synchronisation}% <<<< % Geometry % Pulse method + SNR % Sine method + SNR -\begin{frame}{Beacon Synchronisation} +\begin{frame}[t]{Timing in Radio Detectors: Beacon Synchronisation} % Geometry - \vspace*{0em} - { - { \color{red} GNSS } - + - Extra Timing mechanism: {\color{blue} Beacon}%, {\color{green} ADS-B} + Relative timing is important for Radio Interferometry.\\ + \vspace*{1em} + Default Timing mechanism: {\color<1>{red} Global Navigation Satellite Systems}\\ + \visible<1->{ + +Extra Timing mechanism: {\color<1>{blue} Beacon} (Pulse, Sine)%, {\color{green} ADS-B} } - \\ - \vspace*{2em} + \vfill \begin{figure} \hspace*{-2em} \begin{tikzpicture} - [circle/.style={circle, ultra thick, radius=8mm}] - \node[anchor=south west, inner sep=0] (image) at (0,0) {\includegraphics[width=\textwidth]{beacon/array_setup_gps_transmitter_cows.png}}; + \node[anchor=south west, inner sep=0] (image) at (0,0) {\includegraphics[width=0.8\textwidth]{beacon/array_setup_gps_transmitter_cows.png}}; \begin{scope}[x={(image.south east)}, y={(image.north west)}] %\draw[help lines,xstep=.1,ystep=.1] (0,0) grid (1,1); %\foreach \x in {0,1,...,9} { \node [anchor=north] at (\x/10,0) {0.\x}; } %\foreach \y in {0,1,...,9} { \node [anchor=east] at (0,\y/10) {0.\y}; } \node (transmitter) at (0.23, 0.32) {}; \node (gnss) at (0.85, 0.87) {}; - %\node (aeroplane) at (0.3, 0.67) {\includegraphics[width=1.5cm]{templates/aeroplane.png}}; - %\draw[green, ultra thick, visible on=<{1-}>] (aeroplane.center) circle[radius=8mm]; + %% Aeroplane + %\node[ visible on=<{2-}>] (aeroplane) at (0.5, 0.67) {\scalebox{-1}[1]{\includegraphics[width=1.5cm]{templates/aeroplane.png}}}; + %\draw[green, ultra thick, visible on=<{2-}>] (aeroplane.center) circle[radius=8mm]; + %% Circles \draw[red, ultra thick, visible on=<{1-}>] (gnss.center) circle[radius=8mm]; \draw[blue, ultra thick, visible on=<{1-}>] (transmitter.center) circle[radius=8mm]; + %% Mask Transmitter + \fill[white, visible on=<0>] (0,0) rectangle (0.45,1) ; \end{scope} \end{tikzpicture} \imagecredit{H. Schoorlemmer} \end{figure} \end{frame} +\section{Beacon Synchronisation} +\begin{frame}[t]{Beacon Synchronisation: Geometry} + Local antenna time $t'_i$ due to time~delay~$t_{\mathrm{d}i}$, clock~skew~$\sigma_i$\\ + and transmitter~time~$t_\mathrm{tx}$ + \begin{equation*} + t'_i = t_{tx} + t_{\mathrm{d}i} + \sigma_i + \end{equation*} + \vfill + \begin{figure} + \begin{tikzpicture} + [inner sep=2mm, + place/.style={circle,draw=black!50,fill=white,thick} + ] + \clip (0 , 0) rectangle (9, 2.5); + \node[anchor=south west, inner sep=0] (image) at (0,0) {\includegraphics[width=0.8\textwidth]{beacon/array_setup_gps_transmitter_cows.png}}; + \begin{scope}[x={(image.south east)}, y={(image.north west)}] + %\draw[help lines,xstep=.1,ystep=.1] (0,0) grid (1,1); + %\foreach \x in {0,1,...,9} { \node [anchor=north] at (\x/10,0) {0.\x}; } + %\foreach \y in {0,1,...,9} { \node [anchor=east] at (0,\y/10) {0.\y}; } + %\fill[white] (0.4,0) rectangle (0.6,0.4); + \node (transmitter) at (0.23, 0.32) {}; + \node (ant1) at (0.51, 0.32) [place] {1}; + %\node (ant1) at (0.72, 0.25) [place] {1}; + \node (ant2) at (0.65, 0.50) [place] {2}; +% + \draw (transmitter.center) to node [below] {$t_{\mathrm{d}1}$} (ant1) ; + \draw (transmitter.center) to node [above] {$t_{\mathrm{d}2}$} (ant2) ; + \end{scope} + \end{tikzpicture} + \imagecredit{H. Schoorlemmer} + \end{figure} + \vfill + + Measured time difference:\\ + \vspace{-0.5em} + \begin{equation*} + \Delta t'_{12} = t'_1 - t'_2 = \Delta t_{\mathrm{d}12} + \sigma_{12} + (t_\mathrm{tx} - t_\mathrm{tx}) + \end{equation*} +\end{frame} + + \subsection{Pulse Beacon} \begin{frame}{Pulse Beacon} \begin{figure} @@ -300,29 +419,40 @@ \end{frame} \begin{frame}{Pulse Beacon Timing} \begin{figure} - \includegraphics[width=0.8\textwidth]{pulse/time_res_vs_snr_multiple_dt_small.pdf} + \centering + \includegraphics[width=0.8\textwidth]{pulse/time_res_vs_snr_multiple_dt.pdf} \end{figure} \end{frame} \subsection{Sine Beacon} \begin{frame}{(Multi)Sine Beacon} + Phase measurement $\varphi'_i$ using Fourier Transform, $k$~unknown: \begin{equation*} - \Delta \tclock = \left[ \frac{\varphi}{2\pi} \; + \; k \right] T + t'_i = \left[ \frac{\varphi'_i}{2\pi} \; + \; k \right] T \end{equation*} \begin{figure} \includegraphics[width=.45\textwidth]{methods/fourier/waveform.pdf} \hfill - \includegraphics[width=.45\textwidth]{methods/fourier/noisy_spectrum.pdf} + \includegraphics<1>[width=.45\textwidth]{methods/fourier/noisy_spectrum.pdf} \end{figure} \end{frame} \begin{frame}{(Multi)Sine Beacon Timing} + \vspace*{1em} \begin{figure} - \includegraphics[width=0.8\textwidth]{beacon/time_res_vs_snr.pdf} + \centering + \includegraphics[width=0.8\textwidth]{beacon/time_res_vs_snr_large.pdf} \end{figure} + \vspace*{-1em} \begin{columns} - \begin{column}{0.3\textwidth} + \begin{column}[b]{0.4\textwidth} + \centering + \tiny + Random~Phasor~Sum: + \autocite{goodman1985:2.9}~ + ``Statistical~Optics'', + J.~Goodman \end{column} - \begin{column}{0.7\textwidth} + \begin{column}[b]{0.7\textwidth} \tiny\begin{equation*} p_\PTrue(\pTrue; s, \sigma) = \frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi } @@ -335,17 +465,53 @@ \right)}{2} \cos{\pTrue} \end{equation*} - - \tiny{Random Phasor Sum: ``Statistical Optics'', J. Goodman} \end{column} \end{columns} +\end{frame} +\begin{frame}{Beacon Synchronisation: Conclusion} + \vspace*{2em} + \begin{columns}[T] + \begin{column}{0.49\textwidth} + \begin{center}\bfseries Pulse \end{center} + \vspace*{-1em} + \begin{itemize} + \item discrete + \item requires template + \end{itemize} + \end{column} + \hfill + \begin{column}{0.49\textwidth} + \begin{center}\bfseries Sine \end{center} + \vspace*{-1em} + \begin{itemize} + \item continuous + \item longer trace\\ $\mapsto$ better SNR + \item $k$ period unknown + \end{itemize} + \end{column} + \end{columns} + \vfill + \begin{columns} + \begin{column}{0.49\textwidth} + \includegraphics[width=1\textwidth]{pulse/time_res_vs_snr_multiple_dt_small.pdf} + \end{column} + \hfill + \begin{column}{0.49\textwidth} + \includegraphics[width=1\textwidth]{beacon/time_res_vs_snr_small.pdf} + \end{column} + \end{columns} \end{frame} % >>>> \section{Single Sine Synchronisation}% <<<< % Sine method + Radio Interferometry \begin{frame}{Single Sine Synchronisation} + $k$ is discrete, lift the period degeneracy using the air~shower radiosignal + \begin{equation*} + t'_i = (\frac{\varphi'_i}{2\pi} + n_i)T = A_i + B_i + \end{equation*} + \vspace*{-2em} \begin{figure} %\centering \hspace*{-5em} @@ -353,58 +519,63 @@ \includegraphics<2>[width=1.3\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf}% \includegraphics<3>[width=1.3\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf}% \end{figure} + \begin{align*} + \Delta t'_{ij} &= (A_j + B_j) - (A_i + B_i) + \Delta t'_\varphi \\ + &= \Delta A_{ij} + \only<1>{\Delta t'_\varphi}\only<2->{\cancel{\Delta t'_\varphi}} + k_{ij}T\\ + \end{align*} \end{frame} \begin{frame}{Single Sine Synchronisation Simulation} - Air Shower detected on a grid of 100x100 antennas. - + Air Shower simulation on a grid of 100x100 antennas. + \\ \begin{columns} - \begin{column}{0.5\textwidth} + \begin{column}{0.45\textwidth} \begin{itemize} - \item Add beacon to antenna - \item Randomise clocks - \item Measure phase - \item Repair clocks for small offsets - \item Iteratively find best $k_{ij}$ + \item<2-> Add beacon ($T\sim20\ns$) to antenna + \item<2-> Randomise clocks ($\sigma=30\ns$) + \item<3-> Measure phase with DTFT + \item<3-> Repair clocks for small offsets + \item<3-> Iteratively find best $k_{ij}$ \end{itemize} \end{column} \hfill - \begin{column}{0.4\textwidth} + \begin{column}{0.5\textwidth} \begin{figure} - \includegraphics<1>[width=\textwidth]{ZH_simulation/ba_measure_beacon_phase.py.A74.no_mask.pdf}% - \includegraphics<2>[width=\textwidth]{ZH_simulation/ba_measure_beacon_phase.py.A74.masked.pdf}% + \hspace*{-2em} + \includegraphics<1>[width=1.2\textwidth]{ZH_simulation/array_geometry_shower_amplitude.png} + \includegraphics<2>[width=1.2\textwidth]{ZH_simulation/ba_measure_beacon_phase.py.A74.no_mask.pdf}% + \includegraphics<3>[width=1.2\textwidth]{ZH_simulation/ba_measure_beacon_phase.py.A74.masked.pdf}% \end{figure} \end{column} \end{columns} \end{frame} -\begin{frame}{Simulation: Period $k_i$} +\begin{frame}{Single Sine Synchronisation: Iterative $k_{0i}$-finding} \small{ - Interferometry while allowing to shift by $T = 1/f_\mathrm{beacon}$ - \\ - Iterative process: \\ - \; Scan positions finding the best $\{k_i\}$ set, then zoom in on strongest. + ``Interferometry'' while allowing to shift by $T = 1/f_\mathrm{beacon}$ + \\[5pt] + Iterative process optimizing signal power: \\ + \; Scan positions finding the best $\{k_{0i}\}$ set,\\ + \; then evaluate on a grid near shower axis and zoom in. } - \only<1-4>{\begin{figure} - \includegraphics<1>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.run0.i5.loc8.0-2795.4-7816.0.pdf} - \includegraphics<2>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.run0.i99.loc8.0-2795.4-7816.0.pdf} - \includegraphics<3>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run0.pdf} - \includegraphics<4>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run0.power.pdf} + \only<1-3>{\begin{figure} + \includegraphics<1>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.run0.i1.zoomed.beacon.pdf} + \includegraphics<2>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run0.pdf} + \includegraphics<3>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run0.power.pdf} \end{figure}} - \only<5>{\begin{figure} - \includegraphics[width=0.45\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run0.pdf} + \only<4>{\begin{figure} + \includegraphics[width=0.4\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run1.pdf} \hfill - \includegraphics[width=0.45\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run0.power.pdf} + \includegraphics[width=0.4\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run1.power.pdf} \vspace{0.5cm} - \includegraphics[width=0.45\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run1.pdf} + \includegraphics[width=0.4\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run2.pdf} \hfill - \includegraphics[width=0.45\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run1.power.pdf} + \includegraphics[width=0.4\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run2.power.pdf} \end{figure}} \end{frame} - -\begin{frame}{Time resolving short period beacon: phase vs full} +\begin{frame}{Single Sine Synchronisation: Timing Reparation} \begin{columns} \begin{column}{0.45\textwidth} { Phase reparation } @@ -418,11 +589,28 @@ { Phase + Period reparation } \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}% \vfill - \includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}% + \includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_full.scale4d.pdf}% \end{column} \end{columns} \end{frame} +\begin{frame}{Single Sine Synchronisation: Comparison} + \begin{columns} + \begin{column}{0.45\textwidth} + { True clock } + \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.no_offset.axis.trace_overlap.no_offset.pdf}% + \vfill + \includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf}% + \end{column} + \hfill + \begin{column}{0.45\textwidth} + { Phase + Period reparation } + \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}% + \vfill + \includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_full.scale4d.pdf}% + \end{column} + \end{columns} +\end{frame} % >>>> \section{Conclusion}% <<<< % Single Sine + Air Shower @@ -430,6 +618,22 @@ % Parasitic Single Sine: 67MHz Auger % Implementation for GRAND? \begin{frame}{Conclusion and Outlook} + \begin{itemize} + \item Cosmic Particles induce Extensive Air Showers\\[10pt] + \item Relative Timing is crucial to Radio Interferometry\\[10pt] + \item Pulse and Sine beacons can synchronise effectively\\[10pt] + \item Single Sine + Air Shower works + \end{itemize} + \vspace*{2em} + + \visible<2>{ + Outlook: + \begin{itemize} + \item Parasitic setups, i.e.~the $67\mathrm{MHz}$ in Auger,\\[10pt] + \item Self-calibration using pulsed beacon + \end{itemize} + } + \vfill \end{frame} % >>>> @@ -452,7 +656,270 @@ \tableofcontents \end{frame} +\begin{frame}{Single Sine Timing Result} + \centering + \includegraphics<1>[width=\textwidth]{ZH_simulation/cb_report_measured_antenna_time_offsets.py.time-amplitudes.comparison.pdf} + \includegraphics<2>[width=\textwidth]{ZH_simulation/cb_report_measured_antenna_time_offsets.py.time-amplitudes.residuals.pdf} +\end{frame} +\section{Airshower} +\begin{frame}{Airshower development} + \begin{figure} + \includegraphics[width=\textwidth]{1607.08781/fig02a_airshower+detectors.png} + \imagesource{\arxivcite{Schroder:2016hrv}} + \end{figure} +\end{frame} + +\begin{frame}{Radio footprint; GRAND} + \begin{figure} + \includegraphics[width=0.9\textwidth]{grand/GRAND-detection-principle-1.png} + \imagecredit{\arxivcite{GRAND:2018iaj}} + \end{figure} +\end{frame} + + +\section{Radio Interferometry} +\begin{frame}{Radio Interferometry: Xmax Resolution vs Timing Resolution} + \begin{figure} + \centering + \includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}% + \imagecredit{\arxivcite{Schoorlemmer:2020low}} + \end{figure} +\end{frame} + +\section{Beacon contamination} +\begin{frame}{Sine: Air Shower - Beacon} + \centering + \includegraphics[width=\textwidth]{ZH_simulation/da_reconstruction.py.traces.A74.zoomed.peak.Ex.pdf} +\end{frame} + +\section{Beacon Pulse} +\begin{frame}{Filter Response and Sampling} + \centering + \includegraphics[width=\textwidth]{pulse/interpolation_deltapeak+antenna.pdf} +\end{frame} +%\begin{frame}{Hilbert Timing} +% \centering +% \includegraphics[width=\textwidth]{pulse/hilbert_timing_zoom.pdf} +%\end{frame} + +\section{Beacon without TX} +\subsection{Pulse} +\begin{frame}{Beacon: Pulse (single baseline)} + \begin{figure} + \includegraphics<1>[width=\textwidth]{beacon/field/field_single_center_time.pdf} + \includegraphics<2>[width=\textwidth]{beacon/field/field_single_left_time.pdf} + \end{figure} +\end{frame} +\begin{frame}{Beacon: Pulse (3 baselines)} + \begin{figure} + \includegraphics<1>[width=\textwidth]{beacon/field/field_three_center_time.pdf} + \includegraphics<2>[width=\textwidth]{beacon/field/field_three_left_time.pdf} + \end{figure} +\end{frame} + +\begin{frame}{Beacon: Pulse (multi baseline)} + \begin{figure} + \includegraphics<1>[width=\textwidth]{beacon/field/field_square_ref0_time.pdf} + \includegraphics<2>[width=\textwidth]{beacon/field/field_square_all_time.pdf} + \end{figure} +\end{frame} + +\subsection{Sine} +\begin{frame}{Beacon: Sine (single baseline)} + \begin{figure} + \includegraphics<1>[width=\textwidth]{beacon/field/field_single_center_phase.pdf} + \includegraphics<2>[width=\textwidth]{beacon/field/field_single_left_phase.pdf} + \end{figure} +\end{frame} +\begin{frame}{Beacon: Sine (3 baseline)} + \begin{figure} + \includegraphics<1>[width=\textwidth]{beacon/field/field_three_center_phase.pdf} + \includegraphics<2>[width=\textwidth]{beacon/field/field_three_left_phase.pdf} + \end{figure} +\end{frame} + +\begin{frame}{Beacon: Sine (multi baseline reference antenna)} + \begin{figure} + \includegraphics<1>[width=\textwidth]{beacon/field/field_square_ref0_phase.pdf} + %\includegraphics<2>[width=\textwidth]{beacon/field/field_square_ref0_phase_zoomtx.pdf} + \end{figure} +\end{frame} + + +\begin{frame}{Beacon: Sine (all baselines)} + \begin{figure} + \includegraphics<1>[width=\textwidth]{beacon/field/field_square_all_phase.pdf} + %\includegraphics<2>[width=\textwidth]{beacon/field/field_square_all_phase_zoomtx.pdf} + \end{figure} +\end{frame} + + +\section{Fourier} +\begin{frame}{DTFT vs DFT} + \centering + \includegraphics[width=\textwidth]{methods/fourier/noisy_spectrum.pdf} +\end{frame} +\begin{frame}{(Discrete) Fourier and Phase} + \begin{equation*} + \hspace{-2em} + u(t) = \exp(i2\pi ft + \phi_t) \xrightarrow{\mathrm{Fourier\; Transform}} f', \phi_f + \end{equation*} + \includegraphics[width=\textwidth]{fourier/02-fourier_phase-f_max_showcase.pdf} +\end{frame} +\begin{frame}{Phase reconstruction?} + \begin{figure} + \makebox[\textwidth][c]{\includegraphics[width=1.4\textwidth]{fourier/02-fourier_phase-phi_f_vs_phi_t.pdf}}% + \end{figure} + \begin{block}{} + Phase reconstruction is easy if sample rate ``correct'' + \end{block} +\end{frame} + +%%%%%%%%%%%%% +\begin{frame}{Phase reconstruction?} + \begin{block}{} + What if sample rate ``incorrect''? \\ + \end{block} + \begin{block}<2->{} + $\rightarrow$ Linear interpolation ({\small $f_\mathrm{signal}$, $f_\mathrm{max}$, $f_\mathrm{submax}$, $\phi_\mathrm{max}$ and $\phi_\mathrm{submax}$}) + \end{block} + \vspace{2em} + \begin{figure} + \makebox[\textwidth][c]{ + \includegraphics<1-2>[width=1.4\textwidth]{fourier/02-fourier_phase-phi_f_vs_f_max_increasing_N_samples.pdf} + \includegraphics<3>[width=1.3\textwidth]{fourier/02-fourier_phase-phase_reconstruction-unfolded.pdf} + \includegraphics<4>[width=1.3\textwidth]{fourier/02-fourier_phase-phase_reconstruction-unfolded-zoomed.pdf} + }% + \end{figure} +\end{frame} + + + + +%%%%%%%%%% +\section{GNSS clock stability} +\begin{frame}{GNSS clock stability I} + \begin{columns} + \begin{column}{0.4\textwidth} + \begin{figure} + \centering + \includegraphics[width=0.8\textwidth]{grand/setup/antenna-to-adc.pdf} + \caption{ + GRAND Digitizer Unit's ADC to antennae + } + \end{figure} + \end{column} + \hfill + \begin{column}{0.5\textwidth} + \begin{figure} + \includegraphics[width=\textwidth]{grand/setup/channel-delay-setup.pdf}% + \caption{ + Channel filterchain delay experiment + } + \end{figure} + \end{column} + \end{columns} +\end{frame} + +\begin{frame}{GNSS filterchain delay experiment} + \begin{columns} + \begin{column}{0.5\textwidth} + \centering + Pulse + \includegraphics[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf} + \end{column} + \begin{column}{0.5\textwidth} + \centering + 50MHz Sinewave delay(ch1, ch2) = $46\mathrm{ps} \pm 10$ + \includegraphics[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf} + %\includegraphics[width=\textwidth]{fourier/04_signal_to_noise_fig04.png} + \end{column} + \end{columns} + +\end{frame} + +\begin{frame}{GNSS clock stability II} + \begin{figure} + \centering + \includegraphics[width=0.7\textwidth]{grand/setup/grand-gps-setup.pdf} + \caption{ + GNSS stability experiment + } + \end{figure} +\end{frame} + +\subsection{In the field} +\begin{frame}{} + \centering + \includegraphics[width=0.5\textwidth]{images/IMG_20220712_164912_grand_DU.jpg}% + \includegraphics[width=0.5\textwidth]{images/IMG_20220712_164904_checking_gnss.jpg}% + \vfill + \includegraphics[width=0.5\textwidth]{images/IMG_20220819_152900.jpg}% Outside box Inside Cabling + \includegraphics[width=0.5\textwidth]{images/flir_20220812T114019.jpg}% Heat Inside +\end{frame} + +\begin{frame}{GNSS clock stability III} + \begin{columns} + \begin{column}{0.5\textwidth} + \includegraphics[width=\textwidth]{images/IMG_20220819_154801.jpg}% Closed box outside + \end{column} + \begin{column}{0.5\textwidth} + \includegraphics[width=\textwidth]{images/IMG_20220815_161244.jpg}% Open box outside + \end{column} + \end{columns} +\end{frame} + +\section{White Rabbit}%<<< +\begin{frame}{Precision Time Protocol} + \begin{itemize} + \item Time synchronisation over (long) distance between (multiple) nodes + \end{itemize} + \begin{figure} + \includegraphics[width=0.4\textwidth]{white-rabbit/protocol/ptpMSGs-color.pdf} + \caption{ + \cite{WRPTP} + Precision Time Protocol messages. + } + \end{figure} +\end{frame} +\begin{frame}{White Rabbit} + \begin{columns} + \begin{column}{.5\textwidth} + White Rabbit: + \begin{itemize} + \item SyncE (common oscillator) + \item PTP (synchronisation) + \end{itemize} + + \vspace{2em} + + Factors: + \begin{itemize} + \item device ($\Delta_{txm}$, $\Delta_{rxs}$, ...) + \item link ($\delta_{ms}$, ...) + \end{itemize} + \begin{figure} + \makebox[\textwidth][c]{\includegraphics[width=1.1\textwidth]{white-rabbit/protocol/delaymodel.pdf}} + \imagecredit{\autocite{WRPTP}} + \end{figure} + \end{column} + \begin{column}{.5\textwidth} + \begin{figure} + \makebox[\textwidth][c]{\includegraphics[width=1.1\textwidth]{white-rabbit/protocol/wrptpMSGs_1.pdf}} + \imagecredit{\autocite{WRPTP}} + \end{figure} + \end{column} + \end{columns} +\end{frame} + +\begin{frame}{White Rabbit Clock Reference} + \begin{figure} + \centering + \hspace*{-5em} + \includegraphics[width=1.35\textwidth]{clocks/wr-clocks.pdf} + \end{figure} +\end{frame}%>>> % >>> End of Backup Slides %%%%%%%%%%%%%% % Bibliography <<<