Thesis: small work on Introduction

This commit is contained in:
Eric Teunis de Boone 2023-09-13 17:20:21 +02:00
parent 6022e1675e
commit 0c6b45ec89
1 changed files with 83 additions and 19 deletions

View File

@ -19,31 +19,82 @@ Particle type,
Energy, Energy,
magnetic fields -- origin, magnetic fields -- origin,
\hrule
In the beginning of the 20th century, various types of radiation were discovered.
Dubbed ``Cosmic Rays'', one type was determined to come from beyond the atmosphere.
\subsection{Air Showers} \subsection{Air Showers}
\label{sec:airshowers} \label{sec:airshowers}
Particle cascades, Particle cascades,
Xmax?, Xmax?,
Radio emission, Radio emission,
\begin{figure}
\centering
\includegraphics[width=0.3\textwidth]{airshower/shower_development_depth_iron_proton_photon.pdf}
\caption{
From H. Schoorlemmer.
Shower development as a function of atmospheric depth for an energy of $10^{19}\eV$.
}
\label{fig:airshower:depth}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{0.47\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}%
\end{subfigure}
\hfill
\begin{subfigure}{0.47\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}%
\end{subfigure}
\caption{
From \protect \cite{Schoorlemmer:2012xpa} \protect\cite{Huege:2017bqv}
\protect \Todo{Krijn?}
Radio Emission mechanisms (left: geomagnetic, right: charge-excess)
}
\end{figure}
\subsection{Experiments} \subsection{Experiments}
\label{sec:detectors} \label{sec:detectors}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{astroparticle/The_CR_spectrum_2023.pdf}
\caption{
From \protect \cite{The_CR_spectrum}.
Cosmic Ray flux as a function of energy-per-nucleon.
}
\label{fig:cr_flux}
\end{figure}
Cosmic particles have been observed over a large range of energies.
However, for increasing energies, their flux decreases dramatically (see Figure~\ref{fig:cr_flux}).
To gather decent statistics at these highest energies on a practical timescale, observatories therefore have to span huge areas.
\\
\hrule
Standalone devices, Standalone devices,
\gls*{PA}, \gls*{Auger},
AugerPrime RD, AugerPrime RD,
\gls*{GRAND}, \gls*{GRAND},
\gls*{LOFAR}?, \gls*{LOFAR}?,
\section{Interferometry} \section{Radio Interferometry}
\label{sec:interferometry} \label{sec:interferometry}
Rough outline of Interferometry? Rough outline of Interferometry?
\\ \\
Requires $\sigma_t \lesssim 1\ns$ \cite{Schoorlemmer:2020low}
\begin{figure} \begin{figure}
\includegraphics[width=0.5\textwidth]{radio_interferometry/Schematic_RIT_extracted.png} \centering
\caption{From H. Schoorlemmer} \includegraphics[width=0.5\textwidth]{radio_interferometry/rit_schematic_true.pdf}%
% \includegraphics[width=0.5\textwidth]{radio_interferometry/Schematic_RIT_extracted.png}
% \caption{From H. Schoorlemmer}
\end{figure} \end{figure}
\begin{equation}\label{eq:propagation_delay}%<<< \begin{equation}\label{eq:propagation_delay}%<<<
@ -57,6 +108,7 @@ Requires $\sigma_t \lesssim 1\ns$ \cite{Schoorlemmer:2020low}
\begin{figure} \begin{figure}
\centering
\begin{subfigure}[t]{0.3\textwidth} \begin{subfigure}[t]{0.3\textwidth}
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_bad.png} \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_bad.png}
\label{fig:trace_overlap:bad} \label{fig:trace_overlap:bad}
@ -71,10 +123,22 @@ Requires $\sigma_t \lesssim 1\ns$ \cite{Schoorlemmer:2020low}
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png} \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png}
\label{fig:trace_overlap:best} \label{fig:trace_overlap:best}
\end{subfigure} \end{subfigure}
\caption{Trace overlap due to wrong positions} \caption{
Trace overlap due to wrong positions
}
\label{fig:trace_overlap} \label{fig:trace_overlap}
\end{figure} \end{figure}
\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}%
\caption{
From \protect \cite{Schoorlemmer:2020low}.
$\Xmax$ resolution as a function of detector-to-detector synchronisation.
}
\label{fig:xmax_synchronise}
\end{figure}
\section{Time Synchronisation} \section{Time Synchronisation}
\label{sec:timesynchro} \label{sec:timesynchro}
The main method of synchronising multiple stations is by employing a \gls{GNSS}. The main method of synchronising multiple stations is by employing a \gls{GNSS}.
@ -83,18 +147,18 @@ This system should deliver timing with an accuracy in the order of $10\ns$ \cite
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}). Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
\begin{figure} %\begin{figure}
\centering % \centering
\includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf} % \includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
\caption{ % \caption{
Using a reference clock to compare two other clocks. % Using a reference clock to compare two other clocks.
} % \protect \todo{
\label{fig:reference-clock} % redo figure with less margins,
\todo{ % remove spines,
redo figure with less margins, % rotate labels
remove spines, % }
rotate labels % }
} % \label{fig:reference-clock}
\end{figure} %\end{figure}
\end{document} \end{document}