mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-11-22 15:03:35 +01:00
Thesis: small work on Introduction
This commit is contained in:
parent
6022e1675e
commit
0c6b45ec89
1 changed files with 83 additions and 19 deletions
|
@ -19,31 +19,82 @@ Particle type,
|
|||
Energy,
|
||||
magnetic fields -- origin,
|
||||
|
||||
\hrule
|
||||
|
||||
In the beginning of the 20th century, various types of radiation were discovered.
|
||||
Dubbed ``Cosmic Rays'', one type was determined to come from beyond the atmosphere.
|
||||
|
||||
|
||||
\subsection{Air Showers}
|
||||
\label{sec:airshowers}
|
||||
Particle cascades,
|
||||
Xmax?,
|
||||
Radio emission,
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.3\textwidth]{airshower/shower_development_depth_iron_proton_photon.pdf}
|
||||
\caption{
|
||||
From H. Schoorlemmer.
|
||||
Shower development as a function of atmospheric depth for an energy of $10^{19}\eV$.
|
||||
}
|
||||
\label{fig:airshower:depth}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{subfigure}{0.47\textwidth}
|
||||
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}%
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}{0.47\textwidth}
|
||||
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}%
|
||||
\end{subfigure}
|
||||
\caption{
|
||||
From \protect \cite{Schoorlemmer:2012xpa} \protect\cite{Huege:2017bqv}
|
||||
\protect \Todo{Krijn?}
|
||||
Radio Emission mechanisms (left: geomagnetic, right: charge-excess)
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Experiments}
|
||||
\label{sec:detectors}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{astroparticle/The_CR_spectrum_2023.pdf}
|
||||
\caption{
|
||||
From \protect \cite{The_CR_spectrum}.
|
||||
Cosmic Ray flux as a function of energy-per-nucleon.
|
||||
}
|
||||
\label{fig:cr_flux}
|
||||
\end{figure}
|
||||
|
||||
|
||||
Cosmic particles have been observed over a large range of energies.
|
||||
However, for increasing energies, their flux decreases dramatically (see Figure~\ref{fig:cr_flux}).
|
||||
To gather decent statistics at these highest energies on a practical timescale, observatories therefore have to span huge areas.
|
||||
\\
|
||||
|
||||
\hrule
|
||||
Standalone devices,
|
||||
\gls*{PA},
|
||||
\gls*{Auger},
|
||||
AugerPrime RD,
|
||||
\gls*{GRAND},
|
||||
\gls*{LOFAR}?,
|
||||
|
||||
|
||||
\section{Interferometry}
|
||||
\section{Radio Interferometry}
|
||||
\label{sec:interferometry}
|
||||
Rough outline of Interferometry?
|
||||
\\
|
||||
|
||||
Requires $\sigma_t \lesssim 1\ns$ \cite{Schoorlemmer:2020low}
|
||||
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.5\textwidth]{radio_interferometry/Schematic_RIT_extracted.png}
|
||||
\caption{From H. Schoorlemmer}
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{radio_interferometry/rit_schematic_true.pdf}%
|
||||
% \includegraphics[width=0.5\textwidth]{radio_interferometry/Schematic_RIT_extracted.png}
|
||||
% \caption{From H. Schoorlemmer}
|
||||
\end{figure}
|
||||
|
||||
\begin{equation}\label{eq:propagation_delay}%<<<
|
||||
|
@ -57,6 +108,7 @@ Requires $\sigma_t \lesssim 1\ns$ \cite{Schoorlemmer:2020low}
|
|||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{subfigure}[t]{0.3\textwidth}
|
||||
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_bad.png}
|
||||
\label{fig:trace_overlap:bad}
|
||||
|
@ -71,10 +123,22 @@ Requires $\sigma_t \lesssim 1\ns$ \cite{Schoorlemmer:2020low}
|
|||
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png}
|
||||
\label{fig:trace_overlap:best}
|
||||
\end{subfigure}
|
||||
\caption{Trace overlap due to wrong positions}
|
||||
\caption{
|
||||
Trace overlap due to wrong positions
|
||||
}
|
||||
\label{fig:trace_overlap}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}%
|
||||
\caption{
|
||||
From \protect \cite{Schoorlemmer:2020low}.
|
||||
$\Xmax$ resolution as a function of detector-to-detector synchronisation.
|
||||
}
|
||||
\label{fig:xmax_synchronise}
|
||||
\end{figure}
|
||||
|
||||
\section{Time Synchronisation}
|
||||
\label{sec:timesynchro}
|
||||
The main method of synchronising multiple stations is by employing a \gls{GNSS}.
|
||||
|
@ -83,18 +147,18 @@ This system should deliver timing with an accuracy in the order of $10\ns$ \cite
|
|||
|
||||
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
|
||||
\caption{
|
||||
Using a reference clock to compare two other clocks.
|
||||
}
|
||||
\label{fig:reference-clock}
|
||||
\todo{
|
||||
redo figure with less margins,
|
||||
remove spines,
|
||||
rotate labels
|
||||
}
|
||||
\end{figure}
|
||||
%\begin{figure}
|
||||
% \centering
|
||||
% \includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
|
||||
% \caption{
|
||||
% Using a reference clock to compare two other clocks.
|
||||
% \protect \todo{
|
||||
% redo figure with less margins,
|
||||
% remove spines,
|
||||
% rotate labels
|
||||
% }
|
||||
% }
|
||||
% \label{fig:reference-clock}
|
||||
%\end{figure}
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in a new issue