Third round feedback, requires work on slide 7

This commit is contained in:
Eric Teunis de Boone 2023-03-10 21:42:21 +01:00
parent 8a5de083fe
commit 1c61564174
7 changed files with 151 additions and 49 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 548 KiB

View file

@ -1,5 +1,9 @@
\documentclass[showdate=false]{beamer}
%%%%%%%%
% Goal: show enthousiasm, knowledge and drive about the field
\usepackage[british]{babel}
\usepackage{amsmath}
\usepackage{hyperref}
@ -19,41 +23,60 @@
\setbeamerfont{page number in head/foot}{size=\normalsize}
\setbeamertemplate{footline}[frame number]
\hypersetup{pdfpagemode=UseNone} % don't show bookmarks on initial view
\title[]{Early contest STEP-UP}
\date{March $13^{\text{\tiny{th}}}$, 2023}
\author{E.T. de Boone}
\begin{document}
\frame{\titlepage}
{
\setbeamertemplate{footline}{} % no page number here
\frame{ \titlepage }
}
\begin{frame}{About me}
Studies (at Radboud University, Nijmegen):
\begin{itemize}
\item Bachelor from 2012 to 2020 \\
\quad Minor: Astrophysics
\item Master from 2020 to 2023 (expected) \\
\quad Specialisation: Particle and Astrophysics \\
\quad Minor: Computational Data Science
\item Master's Internship (ongoing) \\
\hfill ``Enhancing Timing Accuracy in Air Shower Radio Detectors''
\end{itemize}
\vspace*{2em}
Interests:
\begin{itemize}
\item Hardware experimenting
\item Ultra High Energy particles
\item Radio detection
\end{itemize}
\end{frame}
% Context
%%%%%%%%%
\begin{frame}{Airshowers from Ultra High Energy particles}
academic curriculum?
\begin{frame}{Ultra High Energy particles}
\begin{figure}
\includegraphics[width=\textwidth]{grand/astroparticletypes_grand.jpg}
% \caption{
% From: \cite{GRAND:2018ia}
% }
\end{figure}
\end{frame}
\begin{frame}{Radio signals and Airshowers}
\begin{columns}
\begin{column}{0.4\textwidth}
Airshower split into EM, Muon and Hadron
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{1607.08781/fig02a_airshower+detectors.png}
% \caption{
% \cite{Schroder:2016hrv}
% }
\end{figure}
\end{column}
\end{columns}
\begin{figure}
\centering
\includegraphics<2>[width=\textwidth]{airshower/airshower_radio_polarisation.jpg}%
\includegraphics[width=\textwidth]{grand/GRAND-detection-principle-1.png}
% \caption{
% From: \cite{GRAND:2018ia}
% }
\end{figure}
\end{frame}
@ -96,16 +119,17 @@
Required time accuracy $< 1 \mathrm{ns}$ not provided by GNSS $ \gtrsim 5 \mathrm{ns}$.
\vspace{ 2em }
\begin{columns}
\begin{column}{0.4\textwidth}
Additional synchronisation
using physics band
\begin{column}{0.5\textwidth}
\visible<2->{Additional synchronisation\\
using physics band
}
\begin{itemize}
\item Pulsed beacon
\item Long period ($\sim 1 \mathrm{\mu s}$)% (AERA)
\item<2-> Pulsed beacon
\item<2-> Long period ($\sim 1 \mathrm{\mu s}$)% (AERA)
\item<3-> Short period ($\lesssim 20 \mathrm{ns}$)
\end{itemize}
\end{column}
\begin{column}{0.6\textwidth}
\begin{column}{0.5\textwidth}
\begin{figure}% Clock error fixes
\includegraphics<1>[width=\textwidth]{radio_interferometry/trace_overlap/dc_grid_power_time_fixes.py.scale4d.best.trace_overlap.zoomed.repair_none.png}%
\includegraphics<2>[width=\textwidth]{radio_interferometry/trace_overlap/dc_grid_power_time_fixes.py.scale4d.best.trace_overlap.zoomed.no_offset.png}%
@ -116,46 +140,86 @@
\end{columns}
\end{frame}
\begin{frame}{Enhancing Timing Accuracy in Air Shower Radio Detectors}
TODO: Relate GNSS stability to beacon synchronisation mechanisms\\
In-band mechanism affect physics data \\
How often should we `resynchronise'?
\begin{columns}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf}
\end{column}
\begin{column}{0.5\textwidth}
%\includegraphics[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf}
\includegraphics[width=\textwidth]{fourier/04_signal_to_noise_fig04.png}
\end{column}
\end{columns}
\end{frame}
% Towards GRAND
%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Advantages of Radio Interferometry}
\begin{columns}
\begin{column}{0.4\textwidth}
\begin{itemize}
\item Trace longitudinal development of airshower
\item Lower SNR threshold
\item Measure depth of airshower
\item Shower axis reconstruction
\item Improved background rejection
\end{itemize}
\end{column}
\begin{column}{0.6\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{2006.10348/fig01.png}
% \caption{
% \cite{Schoorlemmer:2020low}
% From: \cite{Schoorlemmer:2020low}
% }
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Physics Improvement of Radio Interferometry}
composition measurement\\
\vskip 1em
\begin{frame}{Physics Improvement with Radio Interferometry}
\begin{columns}
\begin{column}{0.6\textwidth}
Improved energy measurement (air-calorimetry)
direction reconstruction improved\\
relevance for $\nu$s pointing back to sources
\vskip 1em
Composition measurement (Fe, p, $\gamma$, $\nu$) of primary particle
% through airshower depth Fe high, p deep, gamma deeper, neutrino deepest
\vskip 1em
\visible<2->{
Improved direction reconstruction
% through shower axis reconstruction
%\; Relevant for $\nu$s pointing back to sources
}
\visible<3->{
\vspace*{\fill}
\begin{center}
\begin{minipage}{.6\textwidth}
\hrule
\centering
\vspace{ 2em }
\textit{Thank you!}
\end{minipage}
\end{center}
%\vspace{ 4em }
}
\end{column}
\begin{column}{0.4\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{2006.10348/fig01_a.png}
% \caption{
% From: \cite{Schoorlemmer:2020low}
% }
\end{figure}
\end{column}
\end{columns}
% \visible<2->{
% \vspace*{\fill}
% \begin{center}
% \begin{minipage}{.6\textwidth}
% \hrule
% \centering
% \vspace{10pt}
% \textit{Thank you!}
% \end{minipage}
% \end{center}
% \vspace{\stretch{2}}
% }
\end{frame}
@ -166,12 +230,41 @@
\section{Supplemental material}
\begin{frame}[c]
\centering
\Large {
\textcolor{blue} {
Supplemental material
}
}
\end{frame}
\subsection{Radio Emission}
\begin{frame}{Polarised Radio Emission}
\begin{columns}
\begin{column}{0.2\textwidth}
\centering
Geosynchrotron
\end{column}
\begin{column}{0.7\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}%
\end{column}
\end{columns}
\vfill
\begin{columns}
\begin{column}{0.2\textwidth}
\centering
Askaryan
\end{column}
\begin{column}{0.7\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}%
\end{column}
\end{columns}
% \vfill
% From: \cite{Huege:2017bqv}
\end{frame}
%%%%%%%%%
\subsection{Single frequency beacon synchronisation}
\begin{frame}{Short period beacon synchronisation}
\begin{figure}
\includegraphics<1>[width=\textwidth]{beacon/08_beacon_sync_timing_outline.pdf}%
@ -225,8 +318,17 @@
\end{figure}
\end{frame}
\subsubsection{In the field}
\begin{frame}{GNSS clock stability II}
\begin{columns}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{images/IMG_20220819_154801.jpg}
\end{column}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{images/IMG_20220815_161244.jpg}
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%
% Bibliography