Copy old STEP-UP slides

This commit is contained in:
Eric Teunis de Boone 2023-05-09 12:04:16 +02:00
parent 5ee21ea2da
commit 1ec6f8bfc8
4 changed files with 419 additions and 0 deletions

View File

@ -0,0 +1,377 @@
\documentclass[showdate=false]{beamer}
%%%%%%%%
% Goal: show enthousiasm, knowledge and drive about the field
\usepackage[british]{babel}
\usepackage{amsmath}
\usepackage{hyperref}
\usepackage[backend=bibtex,style=trad-plain]{biblatex}
\usepackage{appendixnumberbeamer}
\usepackage{graphicx}
\graphicspath{{.}{./figures/}{../../figures/}}
\usepackage{todo}
\addbibresource{../../../bibliotheca/bibliography.bib}
% Disable Captions
\setbeamertemplate{caption}{\raggedright\small\insertcaption\par}
% no to navigation, yes to frame numbering
\beamertemplatenavigationsymbolsempty
\setbeamerfont{page number in head/foot}{size=\normalsize}
\setbeamertemplate{footline}[frame number]
\hypersetup{pdfpagemode=UseNone} % don't show bookmarks on initial view
\title[HEP Student seminar]{
{ \large HEP Student seminar }\\
{
Investigating interferometry with\\
GRAND\footnote{Giant Radio Array for Neutrino Detection} and BEACON\footnote{Beam forming Elevated Array for COsmic Neutrinos}
}
}
\date{May $10^{\text{\tiny{th}}}$, 2023}
\author{
E.T. de Boone
\\
\vspace{2em}
Advisor: Olivier Martineau, LPNHE\\
\quad\quad\quad\quad\quad Harm Schoorlemmer, IMAPP
}
\begin{document}
{
\setbeamertemplate{footline}{} % no page number here
\section{Talk}
\frame{ \titlepage }
}
\begin{frame}{My studies}
Studies @Radboud University, Nijmegen
\begin{itemize}
\item Bachelor from 2012 to 2020 \\
\quad {\small Minor: Astrophysics}
\item Master from 2020 to 2023 (expected) \\
\quad {\small Specialisation: Particle and Astrophysics}\\
\quad {\small Minor: Computational Data Science}
\item Master's Internship (November 2021 - May 2023) \\
\quad {\small Supervisor: Harm Schoorlemmer, IMAPP, Radboud University}\\
\quad {\small ``Enhancing Timing Accuracy in Air Shower Radio Detectors''}
\end{itemize}
\vspace*{2em}
Interests:
\begin{itemize}
\item Hardware experimenting
\item Ultra High Energy particles
\item Radio detection
\end{itemize}
\end{frame}
% Context
%%%%%%%%%
\begin{frame}{Ultra High Energy particles}
\begin{figure}
\includegraphics[width=\textwidth]{grand/astroparticletypes_grand.jpg}
% \caption{
% From: \cite{GRAND:2018ia}
% }
\end{figure}
\end{frame}
\begin{frame}{Radio signals and Airshowers}
\begin{figure}
\includegraphics[width=\textwidth]{grand/GRAND-detection-principle-1.png}
% \caption{
% From: \cite{GRAND:2018ia}
% }
\end{figure}
\end{frame}
\begin{frame}{Advantages of Radio Interferometry}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item<1-> Shower axis reconstruction%\; Relevant for $\nu$s pointing back to sources
\vspace*{2em}
\item<2-> Depth of airshower\\
$\mapsto$ composition measurement (Fe, p, $\gamma$, $\nu$)
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\includegraphics<1,2>[width=\textwidth]{2006.10348/fig01.png}
\includegraphics<3>[width=\textwidth]{2006.10348/fig03_b.png}
%\includegraphics<2>[width=\textwidth]{1607.08781/fig02b_longitudinal_shower_profile.png}
% \caption{
% From: \cite{Schoorlemmer:2020low}
% }
\end{figure}
\end{column}
\end{columns}
\end{frame}
% Radio Interferometry
%%%%%%%%%%%%%%%%%%%%%%
\section{Radio Interferometry Concept}
\begin{frame}{Radio Interferometry: Concept}
\begin{columns}
\begin{column}{0.4\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{radio_interferometry/Schematic_RIT_extracted.png}
\end{figure}
\end{column}
\begin{column}{0.6\textwidth}
\vspace*{\fill}
\begin{itemize}
\item<1-> Measure signal $S_i(t)$ at antenna $\vec{a_i}$
\item<2-> Calculate light travel time \\[5pt]
$\Delta_i(\vec{x}) = \frac{ \left| \vec{x} - \vec{a_i} \right| }{c} n_{eff}$
\item<2-> Sum waveforms accounting \\
for time delay \\[5pt]
$S(\vec{x}, t) = \sum S_i( t + \Delta_i(\vec{x}) )$
\end{itemize}
\vspace*{\fill}
\begin{figure}% Spatially
\includegraphics<1>[width=0.8\textwidth]{radio_interferometry/single_trace.png}%
\includegraphics<2>[width=0.8\textwidth]{radio_interferometry/trace_overlap_bad.png}%
\includegraphics<3>[width=0.8\textwidth]{radio_interferometry/trace_overlap_medium.png}%
\includegraphics<4>[width=0.8\textwidth]{radio_interferometry/trace_overlap_best.png}%
\end{figure}
\end{column}
\end{columns}
\end{frame}
% My Internship
%%%%%%%%%%%%%%%
\begin{frame}{Timing Constraint for Radio Interferometry}
\vspace*{ -2em }
Required time accuracy $< 1 \mathrm{ns}$ not provided by GNSS $ \gtrsim 5 \mathrm{ns}$.
\vspace{ 2em }
\begin{columns}
\begin{column}{0.5\textwidth}
\visible<2->{Additional synchronisation\\
using physics band
}
\begin{itemize}
\item<2-> Pulsed beacon
\item<2-> Long period ($\sim 1 \mathrm{\mu s}$)% (AERA)
\item<3-> Short period ($\lesssim 20 \mathrm{ns}$)
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}% Clock error fixes
\includegraphics<1>[width=\textwidth]{radio_interferometry/trace_overlap/dc_grid_power_time_fixes.py.scale4d.best.trace_overlap.zoomed.repair_none.png}%
\includegraphics<2>[width=\textwidth]{radio_interferometry/trace_overlap/dc_grid_power_time_fixes.py.scale4d.best.trace_overlap.zoomed.no_offset.png}%
\includegraphics<3>[width=\textwidth]{radio_interferometry/trace_overlap/dc_grid_power_time_fixes.py.scale4d.best.trace_overlap.zoomed.repair_phases.png}%
\includegraphics<4>[width=\textwidth]{radio_interferometry/trace_overlap/dc_grid_power_time_fixes.py.scale4d.best.trace_overlap.zoomed.repair_all.png}%
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{My Internship: Enhancing Timing Accuracy in Air Shower Radio Detectors}
\vspace{1em}
In-band mechanisms affect physics data \\
How often should we `resynchronise'? \\
\begin{itemize}
\item GNSS clock stability
\item dead-time
\item disruptiveness
\end{itemize}
\vspace{1em}
\vfill
\begin{columns}
\begin{column}{0.6\textwidth}
\includegraphics<1>[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf}
\includegraphics<2>[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf}
\end{column}
\begin{column}{0.4\textwidth}
\includegraphics[width=\textwidth]{beacon/time_res_vs_snr.pdf}
\end{column}
\end{columns}
\end{frame}
% Towards GRAND
%%%%%%%%%%%%%%%%%%%%
\begin{frame}{GRAND and Interferometry}
\begin{columns}
\begin{column}{0.6\textwidth}
GRAND in heavy development\\
relying on radio measurements
\vspace{2em}
Special interest in horizontal showers\\
\vspace{2em}
Neutrino's point back to source\\
\visible<2->{
\vspace*{\fill}
\begin{center}
\begin{minipage}{.6\textwidth}
\hrule
\centering
\vspace{ 2em }
\textit{Thank you!}
\end{minipage}
\end{center}
%\vspace{ 4em }
}
\end{column}
\begin{column}{0.4\textwidth}
\begin{figure}
\includegraphics<1>[width=\textwidth]{2006.10348/fig03_b.png}
\includegraphics<2>[width=\textwidth]{2006.10348/fig01_a.png}
% \caption{
% From: \cite{Schoorlemmer:2020low}
% }
\end{figure}
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%
% Backup slides
%%%%%%%%%%%%%%%
\appendix
\section{Supplemental material}
\begin{frame}[c]
\centering
\Large {
\textcolor{blue} {
Supplemental material
}
}
\end{frame}
\begin{frame}{Airshower development}
\begin{figure}
\includegraphics[width=\textwidth]{1607.08781/fig02a_airshower+detectors.png}
% \caption{
% From \cite{Schroder:2016hrw}
% }
\end{figure}
\end{frame}
\subsection{Radio Emission}
\begin{frame}{Polarised Radio Emission}
\begin{columns}
\begin{column}{0.2\textwidth}
\centering
Geosynchrotron
\end{column}
\begin{column}{0.7\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}%
\end{column}
\end{columns}
\vfill
\begin{columns}
\begin{column}{0.2\textwidth}
\centering
Askaryan
\end{column}
\begin{column}{0.7\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}%
\end{column}
\end{columns}
% \vfill
% From: \cite{Huege:2017bqv}
\end{frame}
%%%%%%%%%
\subsection{Single frequency beacon synchronisation}
\begin{frame}{Short period beacon synchronisation}
\begin{figure}
\includegraphics<1>[width=\textwidth]{beacon/08_beacon_sync_timing_outline.pdf}%
\includegraphics<2>[width=\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf}%
\includegraphics<3>[width=\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf}%
\end{figure}
\end{frame}
\begin{frame}{Time resolving short period beacon}
\begin{figure}
\includegraphics<1>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}
\includegraphics<2>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}
\includegraphics<3>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}
\includegraphics<4>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf}
\end{figure}
\end{frame}
%%%%%%%%%%
\subsection{GNSS clock stability}
\begin{frame}{GNSS clock stability I}
\begin{columns}
\begin{column}{0.4\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{grand/setup/antenna-to-adc.pdf}
\caption{
GRAND Digitizer Unit's ADC to antennae
}
\end{figure}
\end{column}
\hfill
\begin{column}{0.5\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{grand/setup/channel-delay-setup.pdf}%
\caption{
Channel filterchain delay experiment
}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{GNSS clock stability II}
\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{grand/setup/grand-gps-setup.pdf}
\caption{
GNSS stability experiment
}
\end{figure}
\end{frame}
\subsubsection{In the field}
\begin{frame}{GNSS clock stability II}
\begin{columns}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{images/IMG_20220819_154801.jpg}
\end{column}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{images/IMG_20220815_161244.jpg}
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%
% Bibliography
%%%%%%%%%%%%%%
\section*{References}
\begin{frame}{References}
\printbibliography
\end{frame}
\end{document}

View File

@ -0,0 +1,24 @@
# vim:ft=make
-include config.mk
.PHONY: all clean dist-clean
### Variables
MAIN_SRC ?= main.tex
TEXENGINE ?= latexmk --pdf
MAIN_TARGET = $(patsubst %.tex,%.pdf,$(MAIN_SRC))
### Targets
all: $(MAIN_TARGET)
dist: all clean
$(MAIN_TARGET): $(MAIN_SRC)
$(TEXENGINE) $^
dist-clean: clean
@rm -vf *.pdf *.eps *.dvi *.ps
clean:
@rm -vf *.dat *.log *.out *.aux *.nav *.snm *.toc *.vrb *~ *.fls *.fdb_latexmk *-blx.bib *.bbl *.blg *.run.xml

View File

@ -0,0 +1,17 @@
# Preparation for second round Interview for grant to do PhD in Paris
length: 10minutes + 10minutes questions
## Outline
1. Airshowers / Ultra high energy / Radio Signal
2. Radio Interferometry principle
3. RI requires good timing -> work in internship
mention, but put most in [backup slides]
4. Direct Advantages of RI
(follow airshower through the air)
5. RI, CRs and Neutrinos
(better direction reconstruction is interesting for Ns not for CR)

View File

@ -0,0 +1 @@
MAIN_SRC=2023-STEP_UP.tex