mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2025-06-18 05:06:42 +02:00
Thesis: near final version for radio_measurement and beacon_disciplining
This commit is contained in:
parent
e9caeec659
commit
3fc1a48e64
3 changed files with 6 additions and 8 deletions
|
@ -189,7 +189,7 @@ This is limited by the so-called Cherenkov angle.
|
|||
\bigskip
|
||||
At the very highest energy, the flux is in the order of one particle per square kilometer per century (see Figure~\ref{fig:cr_flux}).
|
||||
Observatories therefore have to span huge areas to gather decent statistics at these highest energies on a practical timescale.
|
||||
In recent and upcoming experiments, such as \gls{Auger}, \gls{GRAND} or \gls{LOFAR}, the approach is typically to instrument an area with a sparse grid of detectors to detect the generated air shower.
|
||||
In recent and upcoming experiments, such as \gls{Auger} (and its upgrade \gls{AugerPrime}), \gls{GRAND} or \gls{LOFAR}, the approach is typically to instrument an area with a (sparse) grid of detectors to detect the generated air shower.\Todo{cite experiments here}
|
||||
With distances up to $1.5\;\mathrm{km}$ (\gls{Auger}), the detectors therefore have to operate in a self-sufficient manner\Todo{word} with only wireless communication channels.
|
||||
\\
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue