mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-11-12 18:43:30 +01:00
Thesis: Random Phasor Sum distribution
This commit is contained in:
parent
30dcbaa710
commit
4b53dff786
1 changed files with 131 additions and 46 deletions
|
@ -591,20 +591,90 @@ opening the way to efficiently measuring the phases in realtime.\Todo{figure?}
|
|||
|
||||
% Gaussian noise
|
||||
The traces will contain noise from various sources, both internal (e.g.~LNA~noise) and external (e.g.~radio~communications) to the detector.
|
||||
Adding gaussian noise to the traces in simulation gives a simple noise model, associated to many random noise sources.
|
||||
A simple noise model is given by gaussian noise in the time-domain, associated to many independent random noise sources.
|
||||
Especially important is that this simple noise model will affect the phase measurement depending on the strength of the beacon with respect to the noise level.
|
||||
|
||||
In the following, this aspect is shortly described in terms of two frequency-domain phasors;
|
||||
the noise phasor written as $\vec{m} = a \, e^{i\pTrue}$ with phase $-\pi < \pTrue \leq \pi$ and amplitude $a \geq 0$,
|
||||
and the signal phasor written as $\vec{s} = s \, e^{i\pTrue_s}$, but rotated such that its phase $\pTrue_s = 0$.
|
||||
\Todo{reword; phasor vs plane wave}
|
||||
Further reading can be found in Ref.~\cite{goodman1985:2.9}.
|
||||
\\
|
||||
|
||||
% Phasor concept
|
||||
\begin{figure}
|
||||
\label{fig:phasor}
|
||||
\caption{
|
||||
Phasors picture
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
\bigskip
|
||||
|
||||
|
||||
Phasor concept
|
||||
\cite{goodman1985:2.9}
|
||||
|
||||
Known phasor $\vec{s}$ + random phasor $\vec{m} = a e^{i\pTrue}$ with $-\pi < \pTrue < \pi$ and $a \geq 0$.
|
||||
|
||||
% Noise phasor description
|
||||
The noise phasor is fully described by the joint probability density function
|
||||
\begin{equation}
|
||||
\label{eq:random_phasor_pdf}
|
||||
\label{eq:noise:pdf:joint}
|
||||
\phantom{,}
|
||||
p_{A\PTrue}(a, \pTrue; \sigma)
|
||||
=
|
||||
\frac{a}{s\pi\sigma^2} e^{-\frac{a^2}{2\sigma^2}}
|
||||
,
|
||||
\end{equation}
|
||||
for $-\pi < \pTrue \leq \pi$ and $a \geq 0$.
|
||||
\\
|
||||
|
||||
Integrating \eqref{eq:noise:pdf:joint} over the amplitude $a$, it follows that the phase is uniformly distributed.
|
||||
|
||||
Likewise, the amplitude follows a Rayleigh distribution
|
||||
\begin{equation}
|
||||
\label{eq:noise:pdf:amplitude}
|
||||
\label{eq:pdf:rayleigh}
|
||||
\phantom{,}
|
||||
p_A(a; \sigma)
|
||||
%= p^{\mathrm{RICE}}_A(a; \nu = 0, \sigma)
|
||||
= \frac{a}{\sigma^2} e^{-\frac{a^2}{2\sigma^2}}
|
||||
,
|
||||
\end{equation}
|
||||
for which the mean is $\bar{a} = \sigma \sqrt{\frac{\pi}{2}}$ and the standard~deviation is given by $\sigma_{a} = \sigma \sqrt{ 2 - \tfrac{\pi}{2} }$.
|
||||
|
||||
\begin{figure}
|
||||
\begin{subfigure}{0.45\textwidth}
|
||||
\includegraphics[width=\textwidth]{beacon/pdf_noise_phase.pdf}
|
||||
\caption{
|
||||
The phase of the noise is uniformly distributed.
|
||||
}
|
||||
\label{fig:noise:pdf:phase}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}{0.45\textwidth}
|
||||
\includegraphics[width=\textwidth]{beacon/pdf_noise_amplitude.pdf}
|
||||
\caption{
|
||||
The amplitude of the noise is Rayleigh distribution \eqref{eq:noise:pdf:amplitude}.
|
||||
}
|
||||
\label{fig:noise:pdf:amplitude}
|
||||
\end{subfigure}
|
||||
\caption{
|
||||
Marginal distribution functions of the noise phasor.
|
||||
Rayleigh and Rice distributions.
|
||||
\Todo{expand captions}
|
||||
}
|
||||
\label{fig:noise:pdf}
|
||||
\end{figure}
|
||||
|
||||
\bigskip
|
||||
|
||||
% Random phasor sum
|
||||
|
||||
In this work, the addition of the signal phasor to the noise phasor will be named ``Random Phasor Sum''.
|
||||
The addition shifts the mean in \eqref{eq:noise:pdf:joint}
|
||||
from $\vec{a}^2 = a^2 {\left( \cos \pTrue + \sin \pTrue \right)}^2$
|
||||
to ${\left(\vec{a} - \vec{s}\right)}^2 = {\left( a \cos \pTrue -s \right)}^2 + {\left(\sin \pTrue \right)}^2$
|
||||
,
|
||||
resulting in a new joint distribution
|
||||
\begin{equation}
|
||||
\label{eq:phasor_sum:pdf:joint}
|
||||
\phantom{.}
|
||||
p_{A\PTrue}(a, \pTrue; s, \sigma)
|
||||
= \frac{a}{2\pi\sigma^2}
|
||||
\exp[ -
|
||||
|
@ -615,45 +685,63 @@ Known phasor $\vec{s}$ + random phasor $\vec{m} = a e^{i\pTrue}$ with $-\pi < \p
|
|||
2 \sigma^2
|
||||
}
|
||||
]
|
||||
.
|
||||
\end{equation}
|
||||
requiring $ -\pi < 0 \leq pi $ and $a > 0$, otherwise $p_{A\PTrue} = 0$.
|
||||
\\
|
||||
|
||||
\bigskip
|
||||
|
||||
Noise only Amplitude:
|
||||
Rayleigh distribution
|
||||
Integrating \eqref{eq:phasor_sum:pdf:joint} over $\pTrue$ one finds
|
||||
a Rice (or Rician) distribution for the amplitude,
|
||||
\begin{equation}
|
||||
\label{eq:amplitude_pdf:rayleigh}
|
||||
p_A(a; s=0, \sigma)
|
||||
= p^{\mathrm{RICE}}_A(a; \nu = 0, \sigma)
|
||||
= \frac{a}{\sigma^2} e^{-\frac{a^2}{2\sigma^2}}
|
||||
\end{equation}
|
||||
with $\sigma = \frac{\mu_1}{\sqrt{\frac{\pi}{2}}}$ and $\mu_2 = \frac{ 4 - \pi }{2}\sigma^2$.
|
||||
|
||||
\bigskip
|
||||
Gaussian distribution
|
||||
\begin{equation}
|
||||
\label{eq:amplitude_pdf:gauss}
|
||||
p_A(a; \sigma) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{{\left(a + s\right)}^2}{2\sigma^2}]
|
||||
\end{equation}
|
||||
|
||||
|
||||
Rician distribution ( 2D Gaussian at $\nu$ with $\sigma$ spread)
|
||||
\begin{equation}
|
||||
\label{eq:amplitude_pdf:rice}
|
||||
p^{\mathrm{RICE}}_A(a; s, \sigma)
|
||||
\label{eq:phasor_sum:pdf:amplitude}
|
||||
\label{eq:pdf:rice}
|
||||
\phantom{,}
|
||||
p_A(a; s, \sigma)
|
||||
= \frac{a}{\sigma^2}
|
||||
\exp[-\frac{a^2 + s^2}{2\sigma^2}]
|
||||
\;
|
||||
I_0\left( \frac{a s}{\sigma^2} \right)
|
||||
,
|
||||
\end{equation}
|
||||
with $I_0(z)$ the modified Bessel function of the first kind with order zero.\\
|
||||
No signal $\mapsto$ Rayleigh ($s = 0$);\\
|
||||
Large signal $\mapsto$ Gaussian ($s \gg a$)
|
||||
where $I_0(z)$ is the modified Bessel function of the first kind with order zero.
|
||||
|
||||
For the Rician distribution, two extreme cases can be highlighted (as can be seen in Figure~\ref{fig:phasor_sum:pdf:amplitude}).
|
||||
In the case of a weak signal ($s \ll a$), \eqref{eq:phasor_sum:pdf:amplitude} behaves as a Rayleigh distribution~\eqref{eq:noise:pdf:amplitude}.
|
||||
Meanwhile, it approaches a gaussian distribution around $s$ when a strong signal ($s \gg a$) is presented.
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:strong_phasor_sum:pdf:amplitude}
|
||||
p_A(a; \sigma) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{{\left(a - s\right)}^2}{2\sigma^2}]
|
||||
\end{equation}
|
||||
|
||||
\begin{figure}
|
||||
\begin{subfigure}{0.45\textwidth}
|
||||
\includegraphics[width=\textwidth]{beacon/pdf_phasor_sum_phase.pdf}
|
||||
\caption{
|
||||
The Random Phasor Sum phase distribution \eqref{eq:phasor_sum:pdf:phase}.
|
||||
}
|
||||
\label{fig:phasor_sum:pdf:phase}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}{0.45\textwidth}
|
||||
\includegraphics[width=\textwidth]{beacon/pdf_phasor_sum_amplitude.pdf}
|
||||
\caption{
|
||||
The Random Phasor Sum amplitude distribution \eqref{eq:phasor_sum:pdf:amplitude}.
|
||||
}
|
||||
\label{fig:phasor_sum:pdf:amplitude}
|
||||
\end{subfigure}
|
||||
\caption{
|
||||
A signal phasor's amplitude in the presence of noise will follow a Rician distribution.
|
||||
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution.
|
||||
\Todo{expand captions}
|
||||
}
|
||||
\label{fig:phasor_sum:pdf}
|
||||
\end{figure}
|
||||
|
||||
\bigskip
|
||||
Random Phasor Sum phase distribution: uniform (low $s$) + gaussian (high $s$)
|
||||
Like the amplitude distribution \eqref{eq:phasor_sum:pdf:amplitude}, the marginal phase distribution of \eqref{eq:phasor_sum:pdf:joint} results in two extremes cases;
|
||||
weak signals correspond to the uniform distribution for \eqref{eq:noise:pdf:joint}, while strong signals are well approximated by a gaussian distribution.
|
||||
|
||||
The analytic form takes the following complex expression,
|
||||
\begin{equation}
|
||||
\label{eq:phase_pdf:random_phasor_sum}
|
||||
p_\PTrue(\pTrue; s, \sigma) =
|
||||
|
@ -667,23 +755,20 @@ Random Phasor Sum phase distribution: uniform (low $s$) + gaussian (high $s$)
|
|||
\right)}{2}
|
||||
\cos{\pTrue}
|
||||
\end{equation}
|
||||
with
|
||||
where
|
||||
\begin{equation}
|
||||
\label{eq:erf}
|
||||
\phantom{,}
|
||||
\erf{\left(z\right)} = \frac{2}{\sqrt{\pi}} \int_0^z \dif{t} e^{-t^2}
|
||||
,
|
||||
\end{equation}
|
||||
.
|
||||
|
||||
\bigskip
|
||||
Phase distribution: gaussian
|
||||
\begin{equation}
|
||||
\label{eq:phase_pdf:gaussian}
|
||||
p_\PTrue(\pTrue; s, \sigma) = \frac{1}{\sqrt{2} \sigma} \exp\left(- \frac{s^2}{2\sigma^2} \right)
|
||||
\end{equation}
|
||||
is the error function.
|
||||
|
||||
\begin{figure}
|
||||
\includegraphics[width=0.5\textwidth]{beacon/time_res_vs_snr.pdf}
|
||||
\caption{Measured Time residuals vs Signal to Noise ration}
|
||||
\caption{
|
||||
Measured Time residuals vs Signal to Noise ratio
|
||||
}
|
||||
\label{fig:time_res_vs_snr}
|
||||
\end{figure}
|
||||
|
||||
|
|
Loading…
Reference in a new issue