mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-11-25 16:23:32 +01:00
Thesis: Filterchain: WuotD
This commit is contained in:
parent
0c6b45ec89
commit
56534c2041
1 changed files with 127 additions and 0 deletions
|
@ -1,3 +1,4 @@
|
||||||
|
% vim: fdm=marker fmr=<<<,>>>
|
||||||
\documentclass[../thesis.tex]{subfiles}
|
\documentclass[../thesis.tex]{subfiles}
|
||||||
|
|
||||||
\graphicspath{
|
\graphicspath{
|
||||||
|
@ -10,6 +11,131 @@
|
||||||
\chapter{GRAND characterisation}
|
\chapter{GRAND characterisation}
|
||||||
\label{sec:gnss_accuracy}
|
\label{sec:gnss_accuracy}
|
||||||
|
|
||||||
|
% systematic delays important to obtain the best synchronisation
|
||||||
|
The beacon synchronisation strategy hinges on the ability to measure the beacon signal with sufficient timing accuracy.
|
||||||
|
In the previous chapters, the overall performance of this strategy has been explored by using simulated waveforms.
|
||||||
|
\\
|
||||||
|
% ADC and filtering setup most important component.
|
||||||
|
As mentioned in Chapter~\ref{sec:waveform}, the measured waveforms of a true detector will be influenced by characteristics of the antenna, the filter and the \gls{ADC}.
|
||||||
|
Especially the filter and \gls{ADC} are important components to be characterised to compensate for possible systematic (relative) delays.
|
||||||
|
This Chapter starts an investigation into these systematic delays within \gls{GRAND}'s \gls{DU} V2.0\cite{GRAND:DU2}.
|
||||||
|
\\
|
||||||
|
|
||||||
|
%\section{GRAND DU}% <<<
|
||||||
|
\begin{figure}
|
||||||
|
\begin{subfigure}{0.47\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{grand/DU_board_encased}
|
||||||
|
\end{subfigure}
|
||||||
|
\hfill
|
||||||
|
\begin{subfigure}{0.47\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{grand/DU_board_nocase}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{
|
||||||
|
\gls{GRAND}'s \acrlong{DU} V2.0 inside (\textit{left}) and outside (\textit{right}) its protective encasing.
|
||||||
|
}
|
||||||
|
\label{fig:grand_du}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
% ADC
|
||||||
|
The \gls{DU} (see Figure~\ref{fig:grand_du}), at the base of every single antenna, is the workhorse of \gls{GRAND}.\Todo{rephrase}
|
||||||
|
Its protective encasing has three inputs to which the different polarisations of the antenna are connected.
|
||||||
|
Inside, these inputs are connected to their respective filterchains, leaving a fourth filterchain as spare.
|
||||||
|
Finally, the signals are digitised by a 4-channel \Todo{n-bit} \gls{ADC} sampling at $500\MHz$.
|
||||||
|
\Todo{filterchain, ADC properties}
|
||||||
|
\\
|
||||||
|
% timestamp = GPS + local oscillator
|
||||||
|
The waveforms are timestamped using a local oscillator ($\MHz$\Todo{oscillator}) and the 1\gls{PPS} of a Trimble ICM 360 \gls{GNSS} chip\Todo{ref?}.
|
||||||
|
\Todo{more timing, oscillator}
|
||||||
|
\\
|
||||||
|
|
||||||
|
\hrule
|
||||||
|
Test GRAND setup $\mapsto$ two channel filter delay measurement
|
||||||
|
\\
|
||||||
|
Outlook:
|
||||||
|
\\
|
||||||
|
\quad Local oscillator (multiple sine waveforms within one second),
|
||||||
|
\\
|
||||||
|
\quad GPS-measurement (pulse + sine per DU)
|
||||||
|
|
||||||
|
|
||||||
|
% >>>
|
||||||
|
\section{Filterchain Relative time delays}% <<<
|
||||||
|
Both the \gls{ADC} and the filterchains introduce systematic delays.
|
||||||
|
Since each channel corresponds to a polarisation, it is important that relative systematic delays between the channels can be accounted for.
|
||||||
|
Otherwise, \Todo{rephrase p}
|
||||||
|
\\
|
||||||
|
|
||||||
|
Figure~\ref{fig:channel-delay-setup} illustrates a setup to measure the relative time delays of the filterchain and \gls{ADC}.
|
||||||
|
Two \gls{DU}-channels receive the same signal from a signal generator where one of the channels takes an extra time delay due to extra cable length.
|
||||||
|
A second measurement is taken after interchanging the cables.
|
||||||
|
\\
|
||||||
|
The difference between the time delay of the first and second measurements gives twice the relative time delay without needing to measure the time delays due to cable lengths.
|
||||||
|
\\
|
||||||
|
%One of the two channels takes an extra (relative) time delay by extending one of the cables.
|
||||||
|
%It relies on sending the same signal to two \gls{DU} channels with an extra (relative) time delay for one of the channels.
|
||||||
|
%After measuring the time delay this way, the channels are interchanged so the other channel receives the extra time delay, and a second time delay is measured.
|
||||||
|
%This way, the time delay due to different cable lengths can be accounted for without needing to measure their lengths.
|
||||||
|
%Since the difference between the time delay of the first and second measurements gives twice the relative time delay without this additional time delay.
|
||||||
|
%\\
|
||||||
|
|
||||||
|
|
||||||
|
% signal
|
||||||
|
We used a \Todo{name} signal generator to emit a single sine wave at frequencies $30 -- 150 \MHz$.\Todo{check}
|
||||||
|
With the tools explained in Chapter~\ref{sec:waveform}, the phase of the sine wave in each channel is measured using a \gls{DTFT}\eqref{eq:dtft}.
|
||||||
|
The phase difference then gives a time delay between the channels.
|
||||||
|
\\
|
||||||
|
|
||||||
|
% trigger?
|
||||||
|
|
||||||
|
% cable time delays
|
||||||
|
In Figure~\ref{fig:split-cable-timings}, the difference between the measurements is approximately $10\ns$.
|
||||||
|
With cables length of $3.17\metre$ and $2.01\metre$, this is in accordance with the estimated extra time delay of roughly $4\ns$.
|
||||||
|
|
||||||
|
\begin{figure}% <<<<
|
||||||
|
\begin{subfigure}{0.47\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{grand/setup/channel-delay-setup.pdf}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.47\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{grand/channel-delay-setup-picture}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{
|
||||||
|
Relative time delay experiment by sending the same signal to two channels of the \gls{DU}.
|
||||||
|
The loop in the upper cable incurs a large relative time delay.
|
||||||
|
A second measurement then interchanges the \gls{DU} channels, moving this time delay to the other channel.
|
||||||
|
}
|
||||||
|
\label{fig:channel-delay-setup}
|
||||||
|
\end{figure}% >>>>
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\includegraphics[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf}
|
||||||
|
\caption{}
|
||||||
|
\label{fig:split-cable-timings}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\includegraphics[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf}
|
||||||
|
\caption{
|
||||||
|
\protect \Todo{only sine}
|
||||||
|
}
|
||||||
|
\label{fig:split-cable-delays}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
% >>>
|
||||||
|
\section{Outlook}% <<<
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\includgraphics[width=\textwidth]{grand/setup/grand-gps-setup.pdf}
|
||||||
|
\caption{}
|
||||||
|
\label{fig:gps-delay-setup}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% >>>
|
||||||
|
\chapter{Old GRAND} % <<<
|
||||||
|
|
||||||
Trimble ICM 360
|
Trimble ICM 360
|
||||||
|
|
||||||
Wanted to use WR, but did not work out.
|
Wanted to use WR, but did not work out.
|
||||||
|
@ -34,4 +160,5 @@ $\sigma_t \sim 20 \ns$
|
||||||
\subsection{Local Oscillator}
|
\subsection{Local Oscillator}
|
||||||
Should be $f_\mathrm{osc} = 500 \MHz$
|
Should be $f_\mathrm{osc} = 500 \MHz$
|
||||||
|
|
||||||
|
% >>>
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
Loading…
Reference in a new issue