diff --git a/documents/thesis/chapters/beacon_discipline.tex b/documents/thesis/chapters/beacon_discipline.tex index 75cda2e..c85a50e 100644 --- a/documents/thesis/chapters/beacon_discipline.tex +++ b/documents/thesis/chapters/beacon_discipline.tex @@ -32,7 +32,7 @@ This influences the tradeoff between methods. In the following, the synchronisation scheme for both the continuous and intermittent beacon are elaborated upon. \Todo{further outline} -\section{Physical Setup} %<<< +\section{Timing Problem} %<<< \begin{figure} \centering @@ -154,7 +154,7 @@ In the following, two approaches for measuring $(\tMeasArriv)_i$ are examined. %%%% >>> %%%% Pulse %%%% -\section{Intermittent Pulse Beacon}% <<< +\section{Pulse Beacon}% <<< \label{sec:beacon:pulse} If the stability of the clock allows for it, the synchronisation can be performed during a discrete period. The tradeoff between the gained accuracy and the timescale between synchronisation periods allows for a dead time of the detectors during synchronisation. @@ -277,7 +277,7 @@ Since the filtered signal is sampled discretely, this means the start of the %%%% >>> %%%% Sine %%%% -\section{Continuous Sine Beacon}% <<< +\section{Sine Beacon}% <<< \label{sec:beacon:sine} % continuous -> can be discrete In the case that the stations need continuous synchronisation, a different route must be taken. diff --git a/documents/thesis/chapters/introduction.tex b/documents/thesis/chapters/introduction.tex index f4d8d80..f28a923 100644 --- a/documents/thesis/chapters/introduction.tex +++ b/documents/thesis/chapters/introduction.tex @@ -11,39 +11,26 @@ \label{sec:introduction} -\section{Cosmic Rays} +\section{Cosmic Particles} \label{sec:crs} +Particles from outer space, +Particle type, +Energy, +magnetic fields -- origin, -\subsection{Airshowers} +\subsection{Air Showers} \label{sec:airshowers} +Particle cascades, +Xmax?, +Radio emission, -\subsection{Detectors} +\subsection{Experiments} \label{sec:detectors} Standalone devices, \gls*{PA}, -\gls*{GRAND} - -\section{Time Synchronisation} -\label{sec:timesynchro} -The main method of synchronising multiple stations is by employing a \gls{GNSS}. -This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}). -\\ - -Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}). - -\begin{figure} - \centering - \includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf} - \caption{ - Using a reference clock to compare two other clocks. - } - \label{fig:reference-clock} - \todo{ - redo figure with less margins, - remove spines, - rotate labels - } -\end{figure} +AugerPrime RD, +\gls*{GRAND}, +\gls*{LOFAR}?, \section{Interferometry} @@ -93,4 +80,27 @@ Requires $\sigma_t \lesssim 1\ns$ \cite{Schoorlemmer:2020low} \caption{Trace overlap due to wrong positions} \label{fig:trace_overlap} \end{figure} + +\section{Time Synchronisation} +\label{sec:timesynchro} +The main method of synchronising multiple stations is by employing a \gls{GNSS}. +This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}). +\\ + +Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}). + +\begin{figure} + \centering + \includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf} + \caption{ + Using a reference clock to compare two other clocks. + } + \label{fig:reference-clock} + \todo{ + redo figure with less margins, + remove spines, + rotate labels + } +\end{figure} + \end{document} diff --git a/documents/thesis/chapters/radio_measurement.tex b/documents/thesis/chapters/radio_measurement.tex new file mode 100644 index 0000000..2fe8141 --- /dev/null +++ b/documents/thesis/chapters/radio_measurement.tex @@ -0,0 +1,26 @@ +\documentclass[../thesis.tex]{subfiles} + +\graphicspath{ + {.} + {../../figures/} + {../../../figures/} +} + +\begin{document} +\chapter{Measuring with Radio Antennas} +\label{sec:waveform} +Electric fields, +Antenna Polarizations, +Frequency Bandwidth, +\\ + +Time Domain, +Sampling, +Waveform + Time vector, +\\ + +Analysis: +Fourier Transforms, +Correlation + +\end{document} diff --git a/documents/thesis/chapters/single_sine_interferometry.tex b/documents/thesis/chapters/single_sine_interferometry.tex new file mode 100644 index 0000000..35f8b6a --- /dev/null +++ b/documents/thesis/chapters/single_sine_interferometry.tex @@ -0,0 +1,13 @@ +\documentclass[../thesis.tex]{subfiles} + +\graphicspath{ + {.} + {../../figures/} + {../../../figures/} +} + +\begin{document} +\chapter{Single Sine Beacon and Interferometry} +\label{sec:single} + +\end{document} diff --git a/documents/thesis/thesis.tex b/documents/thesis/thesis.tex index a40646e..a68fd5a 100644 --- a/documents/thesis/thesis.tex +++ b/documents/thesis/thesis.tex @@ -31,9 +31,15 @@ %% Introduction \subfile{chapters/introduction.tex} +%% Electric field from airshower to waveform analysis +\subfile{chapters/radio_measurement.tex} + %% Disciplining by Beacon (Simulation) \subfile{chapters/beacon_discipline.tex} +%% Single Sine Synchronisation and Radio Interferometry +\subfile{chapters/single_sine_interferometry.tex} + %% Comparing GNSS system (GRAND experiments) \subfile{chapters/grand_characterisation.tex}