Thesis+Figures: Phasor Sum figures and appendix

This commit is contained in:
Eric Teunis de Boone 2023-11-14 16:40:32 +01:00
parent 75f7c4c562
commit 624c6a31b6
10 changed files with 15 additions and 52 deletions

View file

@ -8,27 +8,17 @@
}
\begin{document}
\chapter{Random Phasor Distribution}
\chapter{Random Phasor Sum Distribution}
\label{sec:phasor_distributions}
%\section{Random Phasor Distribution}
In the following, this aspect is shortly described in terms of two frequency-domain phasors;
the noise phasor written as $\vec{m} = a \, e^{i\pTrue}$ with phase $-\pi < \pTrue \leq \pi$ and amplitude $a \geq 0$,
and the signal phasor written as $\vec{s} = s \, e^{i\pTrue_s}$, but rotated such that its phase $\pTrue_s = 0$.
\Todo{reword; phasor vs plane wave}
Further reading can be found in Ref.~\cite{goodman1985:2.9}.
This section gives a short derivation of \eqref{eq:random_phasor_sum:phase:sine} using two frequency-domain phasors.
Further reading can be found in Ref.~\cite[Chapter 2.9]{goodman1985:2.9} under ``Constant Phasor plus Random Phasor Sum``.
\\
% Phasor concept
\begin{figure}
\label{fig:phasor}
\caption{
Phasors picture
}
\end{figure}
\bigskip
Write the noise phasor as $\vec{m} = a \, e^{i\pTrue}$ with phase $-\pi < \pTrue \leq \pi$ and amplitude $a \geq 0$,
and the signal phasor as $\vec{s} = s \, e^{i\pTrue_s}$, but rotated such that its phase $\pTrue_s = 0$.
\\
% Noise phasor description
The noise phasor is fully described by the joint probability density function
\begin{equation}
@ -55,37 +45,10 @@ Likewise, the amplitude follows a Rayleigh distribution
,
\end{equation}
for which the mean is $\bar{a} = \sigma \sqrt{\frac{\pi}{2}}$ and the standard~deviation is given by $\sigma_{a} = \sigma \sqrt{ 2 - \tfrac{\pi}{2} }$.
\begin{figure}
\begin{subfigure}{0.45\textwidth}
\includegraphics[width=\textwidth]{beacon/pdf_noise_phase.pdf}
\caption{
The phase of the noise is uniformly distributed.
}
\label{fig:noise:pdf:phase}
\end{subfigure}
\hfill
\begin{subfigure}{0.45\textwidth}
\includegraphics[width=\textwidth]{beacon/pdf_noise_amplitude.pdf}
\caption{
The amplitude of the noise is Rayleigh distribution \eqref{eq:noise:pdf:amplitude}.
}
\label{fig:noise:pdf:amplitude}
\end{subfigure}
\caption{
Marginal distribution functions of the noise phasor.
\protect \Todo{expand captions}
Rayleigh and Rice distributions.
}
\label{fig:noise:pdf}
\end{figure}
\bigskip
\\
% Random phasor sum
In this work, the addition of the signal phasor to the noise phasor will be named ``Random Phasor Sum''.
The addition shifts the mean in \eqref{eq:noise:pdf:joint}
Adding the signal phasor, the mean in \eqref{eq:noise:pdf:joint} shifts
from $\vec{a}^2 = a^2 {\left( \cos \pTrue + \sin \pTrue \right)}^2$
to ${\left(\vec{a} - \vec{s}\right)}^2 = {\left( a \cos \pTrue -s \right)}^2 + {\left(\sin \pTrue \right)}^2$
,
@ -133,23 +96,23 @@ Meanwhile, it approaches a gaussian distribution around $s$ when a strong signal
\begin{figure}
\begin{subfigure}{0.45\textwidth}
\includegraphics[width=\textwidth]{beacon/pdf_phasor_sum_phase.pdf}
\includegraphics[width=\textwidth]{beacon/phasor_sum/pdfs-phases.pdf}
\caption{
The Random Phasor Sum phase distribution \eqref{eq:phasor_sum:pdf:phase}.
The Random Phasor Sum phase distribution \eqref{eq:phase_pdf:random_phasor_sum}.
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a uniform distribution.
}
\label{fig:phasor_sum:pdf:phase}
\label{fig:random_phasor_sum:pdf:phase}
\end{subfigure}
\hfill
\begin{subfigure}{0.45\textwidth}
\includegraphics[width=\textwidth]{beacon/pdf_phasor_sum_amplitude.pdf}
\includegraphics[width=\textwidth]{beacon/phasor_sum/pdfs-amplitudes.pdf}
\caption{
The Random Phasor Sum amplitude distribution \eqref{eq:phasor_sum:pdf:amplitude}.
A signal phasor's amplitude in the presence of noise will follow a Rician distribution.
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution.
}
\label{fig:phasor_sum:pdf:amplitude}
\end{subfigure}
\caption{
A signal phasor's amplitude in the presence of noise will follow a Rician distribution.
For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution.
\protect \Todo{expand captions}
}
\label{fig:phasor_sum:pdf}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.