STEP-UP: as given on June 12 09:30

This commit is contained in:
Eric Teunis de Boone 2023-06-12 10:31:17 +02:00
parent 83476de572
commit 74c2c350f9

View file

@ -12,15 +12,25 @@
\usepackage{appendixnumberbeamer}
\usepackage{graphicx}
\usepackage{tikz}
\usepackage{xurl}
\graphicspath{{.}{./figures/}{../../figures/}}
\usepackage{todo}
\addbibresource{../../../bibliotheca/bibliography.bib}
% Use arXiv identifier if available
\DeclareCiteCommand{\arxivcite}
{\usebibmacro{prenote}}
{\usebibmacro{citeindex}%
\usebibmacro{cite}
\newunit
\usebibmacro{eprint}}
{\multicitedelim}
{\usebibmacro{postnote}}
\newcommand{\imagesource}[1]{~\\[0pt]\vspace*{-7pt}\hspace*{10pt}\hbox{\tiny#1}}
\newcommand{\imagesource}[1]{~\\[0pt]\vspace*{-7pt}\hspace*{10pt}{\tiny#1}}
\newcommand{\imagecredit}[1]{\imagesource{Credit:\thinspace#1}}
\newcommand{\imagecite}[1]{\imagesource{\textcite{#1}}}
\newcommand{\imagecite}[1]{\imagesource{\arxivcite{#1}}}
% Disable Captions
\setbeamertemplate{caption}{\raggedright\small\insertcaption\par}
@ -38,14 +48,14 @@
{%
\leavevmode%
\hbox{%
\begin{beamercolorbox}[wd=.7\paperwidth,ht=2.25ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{title in head/foot}%
\begin{beamercolorbox}[wd=.7\paperwidth,ht=2.55ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{title in head/foot}%
\usebeamertemplate*{section in head/foot}%
\hfill%
\end{beamercolorbox}
\begin{beamercolorbox}[wd=.1\paperwidth,ht=2.25ex,dp=1ex,sep=0pt]{my empty section}
\begin{beamercolorbox}[wd=.1\paperwidth,ht=2.55ex,dp=1ex,sep=0pt]{my empty section}
\hfill%
\end{beamercolorbox}
\begin{beamercolorbox}[wd=.2\paperwidth,ht=2.25ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{page number in head/foot}%
\begin{beamercolorbox}[wd=.2\paperwidth,ht=2.55ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{page number in head/foot}%
\hfill%
\usebeamertemplate*{page number in head/foot}%
\end{beamercolorbox}}%
@ -79,8 +89,8 @@
\title[STEP-UP: Interferometry in GRAND]{% and BEACON]{
{ \large STEP'UP Interview}\\
{
Investigating interferometry in\\
GRAND\footnote{Giant Radio Array for Neutrino Detection}
Investigating interferometry in\\%
GRAND\footnote{ Giant Radio Array for Neutrino Detection}
% and BEACON\footnote{Beam forming Elevated Array for COsmic Neutrinos}
}
}
@ -89,10 +99,10 @@
\author[E.T. de Boone]{
E.T. de Boone
\\
\vspace{2em}
Advisors: Olivier Martineau, LPNHE\\
\quad\quad\quad\quad\quad\, Harm Schoorlemmer, IMAPP
% \\
% \vspace{2em}
% Advisors: Olivier Martineau, LPNHE\\
% \quad\quad\quad\quad\quad\, Harm Schoorlemmer, IMAPP
}
\begin{document}
@ -151,178 +161,164 @@
\begin{column}{0.45\textwidth}
\begin{figure}
\hspace*{-1em}
%\scriptsize{TODO: Xmax figure showing difference for photon/proton}
%\includegraphics[width=\textwidth]{1607.08781/fig02b_longitudinal_shower_profile.png}%
%\imagecite{Schroder:2016hrv}
\includegraphics[width=\textwidth]{airshower/shower_development_depth_iron_proton_photon.pdf}%
\imagecredit{H. Schoorlemmer}
\end{figure}
\end{column}
\begin{column}{0.45\textwidth}
Enhanced Xmax measurement with Interferometry\\
$\mapsto$ composition measurement\\
$\mapsto$ particle identification\\
\begin{figure}
\centering
\includegraphics[width=\textwidth]{2006.10348/fig03_b.png}%
\imagecite{Schoorlemmer:2020low}
\end{figure}
%photon/proton/Fe differences\\
%\begin{figure}
% \centering
% \includegraphics[width=0.7\textwidth]{2006.10348/fig01.png}%
% \imagecite{Schoorlemmer:2020low}
%\end{figure}
%\vspace*{1em}
\end{column}
\end{columns}
\end{frame}
\note[itemize]
{
\item Statistical discrimation: high Z at high altitudes
\item FD claims 20 g/cm2, Fe/p ~ 50 g/cm2
\item Radio Interferometry helps in Xmax measurement
}
% GRAND
%%%%%%%%%%%%%%%
\section{GRAND}
\begin{frame}{Giant Radio Array for Neutrino Detection}
%\begin{columns}
% \begin{column}{0.45\textwidth}
% \begin{figure}
% \hspace*{-2em}
% \includegraphics[width=1.3\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}%
% \end{figure}
% \vfill
% \end{column}
% \hfill
% \begin{column}{0.45\textwidth}
\begin{figure}
% \hspace*{-2em}
\includegraphics[width=1\textwidth]{grand/GRAND-detection-principle-1.png}%
\imagecite{GRAND:2018iaj}
\end{figure}
% \end{column}
%\end{columns}
%200 000 Radio Antennas $\mapsto$ largest Cosmic Ray observatory\\
\end{frame}
\note[itemize]
{
\item GRAND radio-only, heavy development
\item pathfinders upto 2026 (Auger reference, Europe testbed, China array)
\item ultra high energy has low hits, need large area
}
% RI in GRAND
%%%%%%%%%%%%%
%\section{Radio Interferometry}
%\begin{frame}{Radio Interferometry}
% \begin{columns}
% \begin{column}{0.6\textwidth}
% Enhanced measurements:
% \begin{itemize}
% \item Shower depth \\
% $\mapsto$ composition measurement\\
% \item Shower axis reconstruction
% \item Detector noise suppression\\
% \end{itemize}
%
% \vspace*{2em}
%
% Problem: synchronisation $\Delta t < \frac{1}{4f}$\\
% \end{column}
% \begin{column}{0.4\textwidth}
% \begin{figure}
% \centering
% \includegraphics[width=\textwidth]{2006.10348/fig01_a.png}%
% \imagecite{Schoorlemmer:2020low}
% \end{figure}
% \end{column}
% \end{columns}
%\end{frame}
\section{Implementing Interferometry in GRAND}
\begin{frame}{Time synchronisation}
\section{Radio Interferometry and Timing}
\begin{frame}{Effect of Timing Synchronisation}
%\vspace*{-2em}
Interferometry: Amplitude + Timing information of the $\vec{E}$-field\\
\vspace*{ 0.8em }
Required time accuracy $< \frac{1}{4f} \sim 1 \mathrm{ns}$ (GNSS $\gtrsim 5 \mathrm{ns}$)
\vspace*{ 0.8em }
%Problem: Interferometry requires $\Delta t < \frac{1}{4f}$\\
%\vspace*{1em}
Internship: \\
\quad schemes to synchronise using extra physics band signal\\
% \quad synchronisation with a single beacon in simulations\\ (algorithm)
% \quad (pulse and single frequency)
\vspace*{ 0.5em }
\begin{columns}
%\hfill
\begin{column}{0.3\textwidth}
\includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_none.axis.trace_overlap.repair_none.pdf}%
\begin{column}{0.4\textwidth}
\vfill
\includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}%
\hyperlink{fig:sine:repairments}{\includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_none.axis.trace_overlap.repair_none.pdf}}%
\vspace*{\fill}
\hyperlink{fig:sine:grid_power}{\includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}}
\end{column}
\hfill
\begin{column}{0.3\textwidth}
\includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}%
\begin{column}{0.4\textwidth}
\vfill
\includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}%
\end{column}
\hfill
\begin{column}{0.3\textwidth}
\includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}%
\vfill
\includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}%
\hyperlink{fig:sine:repairments}{\includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}}%
\vspace*{\fill}
\hyperlink{fig:sine:grid_power}{\includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}}%
\end{column}
\hfill
\end{columns}
\end{frame}
\note{
}
\begin{frame}{Timing Synchronisation: Beacon}
\begin{columns}
\begin{column}{0.6\textwidth}
\hspace*{1em}
Required time accuracy $\sim 1 \mathrm{ns}$\\
\vspace*{1em}
\hspace*{1em}
\visible<2->{
\textcolor{red}{GNSS}, in Auger $\gtrsim 5 \mathrm{ns}$\\
}
\hspace*{1em}
\vspace*{1em}
\visible<2->{
\textcolor{blue}{Beacon}: Pulse or Sine
}
\vspace*{\fill}
\begin{figure}
\hspace*{-2em}
\begin{tikzpicture}
\node[anchor=south west, inner sep=0] (image) at (0,0) {\includegraphics[width=0.8\textwidth]{beacon/array_setup_gps_transmitter_cows.png}};
\node[anchor=south west, inner sep=0] (image) at (0,0) {\includegraphics[width=\textwidth]{beacon/array_setup_gps_transmitter_cows.png}};
\begin{scope}[x={(image.south east)}, y={(image.north west)}]
%\draw[help lines,xstep=.1,ystep=.1] (0,0) grid (1,1);
%\foreach \x in {0,1,...,9} { \node [anchor=north] at (\x/10,0) {0.\x}; }
%\foreach \y in {0,1,...,9} { \node [anchor=east] at (0,\y/10) {0.\y}; }
\draw[red, ultra thick, visible on=<2>] (0.85,0.87) circle [radius=8mm];
\draw[green, ultra thick, visible on=<3>] (0.23,0.32) circle [radius=8mm];
\draw[red, ultra thick, visible on=<{2-}>] (0.85,0.87) circle [radius=8mm];
\draw[blue, ultra thick, visible on=<{2-}>] (0.23,0.32) circle [radius=8mm];
\end{scope}
\end{tikzpicture}
\imagecredit{H. Schoorlemmer}
\end{figure}
\end{column}
\begin{column}{0.5\textwidth}
\centering
\vspace*{\fill}
\onslide<3->{\hyperlink{fig:pulse:accuracy}{\includegraphics[width=\textwidth]{pulse/time_res_vs_snr_multiple_dt_small.pdf}}}%
\vspace*{\fill}
\onslide<3->{\hyperlink{fig:sine:accuracy}{\includegraphics[width=\textwidth]{beacon/time_res_vs_snr_f67.pdf}}}%
\vspace*{\fill}
\end{column}
\end{columns}
\end{frame}
\note{
Single frequency interest due to Auger (TV@67MHz)
}
\section{Radio Interferometry in GRAND}
\begin{frame}{Radio Interferometry in GRAND}
\begin{figure}
\centering
\only<1>{\hspace*{-2em}}
\includegraphics<1>[width=1.13\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}%
\includegraphics<2->[width=0.5\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}%
\vspace*{\fill}
\hspace*{-2em}
\includegraphics[width=1.13\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}%
%\includegraphics<2->[width=0.5\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}%
\imagesource{Adapted from \url{https://grand.cnrs.fr/overview/roadmap/}}
\end{figure}
\end{frame}
\only<2-> {
Timing Requirements:\\
\quad synchronisation schemes investigated in internship,\\
\quad opportunity to implement and test (e.g.~Nan\c{c}ay)\\
}
% GRAND
%%%%%%%%%%%%%%%
%\note[itemize]
%{
% \item GRAND radio-only, heavy development
% \item pathfinders upto 2026 (Auger reference, Europe testbed, China array)
% \item ultra high energy has low hits, need large area
%}
\only<3-> {
\vspace*{1em}
Interferometric Analyses:\\
\quad enhances Xmax resolution\\
}
\vspace{\stretch{100}}
\begin{frame}{Radio Interferometry in GRAND in Conclusion}
\begin{columns}
\begin{column}{0.4\textwidth}
\hspace*{-1.2em}
\begin{figure}
\vspace*{\fill}
\vspace*{2.4em}
\includegraphics[width=1\textwidth]{grand/roadmap-per-2023-01-shortened-prototyping.jpg}%
\imagesource{Adapted from \url{https://grand.cnrs.fr/overview/roadmap/}}
\vspace*{\fill}
\end{figure}
\end{column}
\hspace*{-2em}
\begin{column}{0.65\textwidth}
\begin{enumerate}
\item Timing Requirement in~Hardware\\
\quad test beacon at Auger/GP300
\vspace*{2em}
\item Setup Interferometric Analyses\\
\quad adapt to GRAND
\vspace*{2em}
\item Particle ID through Xmax\\
and Shower Axis reconstruction
\end{enumerate}
\vspace*{1em}
\end{column}
\end{columns}
\end{frame}
% \only<2-> {
% Timing Requirements:\\
% \quad synchronisation schemes investigated in internship,\\
% \quad opportunity to implement and test (e.g.~Nan\c{c}ay)\\
% }
%
% \only<3-> {
% \vspace*{1em}
% Interferometric Analyses:\\
% \quad enhances Xmax resolution\\
% }
%
% \vspace{\stretch{100}}
%\vspace*{2em}
%GRAND Goals:\\
@ -344,14 +340,12 @@
% \end{center}
% %\vspace{ 4em }
% }
\end{frame}
%%%%%%%%%%%%%%%
% Backup slides
%%%%%%%%%%%%%%%
\appendix
\section{Supplemental material}
\begin{frame}[c]
\centering
\Large {
@ -361,6 +355,19 @@
}
\end{frame}
\section*{Table of Contents}
\begin{frame}{Table of Contents}
\tableofcontents
\end{frame}
\begin{frame}{GRAND}
\begin{figure}
\includegraphics[width=1\textwidth]{grand/GRAND-detection-principle-1.png}%
\imagecite{GRAND:2018iaj}
\end{figure}
\end{frame}
\section{Radio Emission}
\begin{frame}{Airshower development}
\begin{figure}
\includegraphics[width=0.9\textwidth]{1607.08781/fig02a_airshower+detectors.png}
@ -368,7 +375,6 @@
\end{figure}
\end{frame}
\subsection{Radio Emission}
\begin{frame}{Polarised Radio Emission}
\begin{columns}
\begin{column}{0.2\textwidth}
@ -395,7 +401,7 @@
% \vfill
\end{frame}
\subsubsection{Radio Interferometry}
\section{Radio Interferometry}
\begin{frame}{Radio Interferometry: Concept}
\begin{columns}
\begin{column}{0.4\textwidth}
@ -445,9 +451,52 @@
\end{figure}
\end{frame}
\section{Time Synchronisation}
\subsection{Expected Time Accuracies vs SNR}
\subsubsection{Sine}
\begin{frame}{Sine wave: Accuracy}
\begin{figure}
\includegraphics[width=\textwidth]{beacon/time_res_vs_snr.pdf}
\label{fig:sine:accuracy}
\end{figure}
\end{frame}
\begin{frame}{Sine wave: SNR}
\includegraphics[width=\textwidth]{ZH_simulation/signal_to_noise_definition.pdf}
\end{frame}
\subsubsection{Pulse}
\begin{frame}{Pulse Template}
\begin{figure}
\includegraphics[width=\textwidth]{pulse/time_res_vs_snr_multiple_dt.pdf}
\label{fig:pulse:accuracy}
\end{figure}
\end{frame}
\begin{frame}{Pulse Template: SNR}
\begin{columns}
\begin{column}{0.45\textwidth}
\centering
Signal to Noise
\includegraphics[width=\textwidth]{pulse/antenna_signal_to_noise_6.pdf}
\end{column}
\hfill
\begin{column}{0.45\textwidth}
\centering
Impulse Response
\includegraphics[width=\textwidth]{pulse/filter_response.pdf}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Pulse Template: Timing}
\begin{figure}
\includegraphics[width=\textwidth]{pulse/correlation_tdt0.2_zoom.pdf}
\label{fig:pulse:correlation}
\end{figure}
\end{frame}
%%%%%%%%%
\subsection{Synchronisation: Single frequency beacon}
\subsection{Single Frequency Beacon}
\begin{frame}{Short period beacon synchronisation}
\begin{figure}
%\centering
@ -459,16 +508,6 @@
\end{frame}
\begin{frame}{Time resolving short period beacon}
\begin{figure}
\centering
\includegraphics<1>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}
\includegraphics<2>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}
\includegraphics<3>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}
\includegraphics<4>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf}
\end{figure}
\end{frame}
\begin{frame}{Time resolving short period beacon: phase vs full}
\begin{columns}
\begin{column}{0.45\textwidth}
@ -476,6 +515,7 @@
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}%
\vfill
\includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}%
\label{fig:sine:repairments}
\end{column}
\hfill
\begin{column}{0.45\textwidth}
@ -487,21 +527,19 @@
\end{columns}
\end{frame}
\subsection{Synchronisation: Expected Time Accuracies vs SNR}
\begin{frame}
\begin{frame}{Time resolving short period beacon}
\begin{figure}
\includegraphics[width=\textwidth]{beacon/time_res_vs_snr.pdf}
\centering
\includegraphics<1>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}
\includegraphics<2>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}
\includegraphics<3>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}
\includegraphics<4>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf}
\label{fig:sine:grid_power}
\end{figure}
\end{frame}
\begin{frame}
\begin{figure}
\includegraphics[width=\textwidth]{pulse/time_res_vs_snr_multiple_dt.pdf}
\end{figure}
\end{frame}
%%%%%%%%%%
\subsection{GNSS clock stability}
\section{GNSS clock stability}
\begin{frame}{GNSS clock stability I}
\begin{columns}
\begin{column}{0.4\textwidth}
@ -525,6 +563,25 @@
\end{columns}
\end{frame}
\begin{frame}{GNSS filterchain delay experiment}
\begin{columns}
\begin{column}{0.5\textwidth}
\centering
Pulse
\includegraphics[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf}
\end{column}
\begin{column}{0.5\textwidth}
\centering
50MHz Sinewave
\includegraphics[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf}
%\includegraphics[width=\textwidth]{fourier/04_signal_to_noise_fig04.png}
Delay $ \lesssim 150\mathrm{ps}$
\end{column}
\end{columns}
\end{frame}
\begin{frame}{GNSS clock stability II}
\begin{figure}
\centering
@ -535,7 +592,7 @@
\end{figure}
\end{frame}
\subsubsection{In the field}
\subsection{In the field}
\begin{frame}{GNSS clock stability II}
\begin{columns}
\begin{column}{0.5\textwidth}
@ -547,16 +604,16 @@
\end{columns}
\end{frame}
\subsubsection{White Rabbit}
\subsection{White Rabbit}
\begin{frame}{White Rabbit: GNSS}
\begin{figure}
\includegraphics<1>[width=\textwidth]{gnss/phase-delocked-gps-white-rabbit-setup-colored.pdf}
\includegraphics<2>[width=\textwidth]{gnss/phase-delocked-gps-white-rabbit-setup-colored.pdf}
\includegraphics<1>[width=0.85\textwidth]{gnss/phase-delocked-gps-white-rabbit-setup-colored.pdf}%
\includegraphics<2>[width=0.8\textwidth]{gnss/phase-locked-gps-white-rabbit-setup-colored.pdf}%
\end{figure}
\end{frame}
\begin{frame}{White Rabbit: Precision Time Protocol}
\begin{figure}
\includegraphics[height=\textheight]{white-rabbit/protocol/wrptpMSGs_1.pdf}
\includegraphics[height=0.8\textheight]{white-rabbit/protocol/wrptpMSGs_1.pdf}
\imagecite{WRPTP}
\end{figure}
\end{frame}