diff --git a/documents/thesis/chapters/appendix-random-phasor.tex b/documents/thesis/chapters/appendix-random-phasor.tex index f0da3db..507256a 100644 --- a/documents/thesis/chapters/appendix-random-phasor.tex +++ b/documents/thesis/chapters/appendix-random-phasor.tex @@ -13,7 +13,7 @@ %\section{Random Phasor Distribution} This section gives a short derivation of \eqref{eq:random_phasor_sum:phase:sine} using two frequency-domain phasors. -Further reading can be found in Ref.~\cite[Chapter 2.9]{goodman1985:2.9} under ``Constant Phasor plus Random Phasor Sum``. +Further reading can be found in Ref.~\cite[Chapter 2.9]{goodman1985:2.9} under ``Constant Phasor plus Random Phasor Sum''. \\ Write the noise phasor as $\vec{m} = a \, e^{i\pTrue}$ with phase $-\pi < \pTrue \leq \pi$ and amplitude $a \geq 0$, @@ -26,14 +26,14 @@ The noise phasor is fully described by the joint probability density function \phantom{,} p_{A\PTrue}(a, \pTrue; \sigma) = - \frac{a}{s\pi\sigma^2} e^{-\frac{a^2}{2\sigma^2}} + \frac{a}{2\pi\sigma^2} e^{-\frac{a^2}{2\sigma^2}} , \end{equation} for $-\pi < \pTrue \leq \pi$ and $a \geq 0$. \\ Integrating \eqref{eq:noise:pdf:joint} over the amplitude $a$, it follows that the phase is uniformly distributed. - +\\ Likewise, the amplitude follows a Rayleigh distribution \begin{equation} \label{eq:noise:pdf:amplitude} @@ -49,10 +49,9 @@ for which the mean is $\bar{a} = \sigma \sqrt{\frac{\pi}{2}}$ and the standard~d % Random phasor sum Adding the signal phasor, the mean in \eqref{eq:noise:pdf:joint} shifts -from $\vec{a}^2 = a^2 {\left( \cos \pTrue + \sin \pTrue \right)}^2$ -to ${\left(\vec{a} - \vec{s}\right)}^2 = {\left( a \cos \pTrue -s \right)}^2 + {\left(\sin \pTrue \right)}^2$ -, -resulting in a new joint distribution + from $\vec{a}^2 = a^2 {\left( \cos \pTrue + \sin \pTrue \right)}^2$ + to ${\left(\vec{a} - \vec{s}\right)}^2 = {\left( a \cos \pTrue -s \right)}^2 + {\left(\sin \pTrue \right)}^2$, + resulting in a new joint distribution \begin{equation} \label{eq:phasor_sum:pdf:joint} \phantom{.} @@ -84,43 +83,28 @@ a Rice (or Rician) distribution for the amplitude, , \end{equation} where $I_0(z)$ is the modified Bessel function of the first kind with order zero. +\\ +\begin{figure} + \centering + \includegraphics[width=0.5\textwidth]{beacon/phasor_sum/pdfs-amplitudes.pdf} + \caption{ + A signal phasor's amplitude in the presence of noise will follow a Rician distribution~\eqref{eq:phasor_sum:pdf:amplitude}. + For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution. + } + \label{fig:phasor_sum:pdf:amplitude} +\end{figure} For the Rician distribution, two extreme cases can be highlighted (as can be seen in Figure~\ref{fig:phasor_sum:pdf:amplitude}). In the case of a weak signal ($s \ll a$), \eqref{eq:phasor_sum:pdf:amplitude} behaves as a Rayleigh distribution~\eqref{eq:noise:pdf:amplitude}. Meanwhile, it approaches a gaussian distribution around $s$ when a strong signal ($s \gg a$) is presented. - \begin{equation} \label{eq:strong_phasor_sum:pdf:amplitude} p_A(a; \sigma) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{{\left(a - s\right)}^2}{2\sigma^2}] -\end{equation} +\end{equation}\\ -\begin{figure} - \begin{subfigure}{0.45\textwidth} - \includegraphics[width=\textwidth]{beacon/phasor_sum/pdfs-phases.pdf} - \caption{ - The Random Phasor Sum phase distribution \eqref{eq:phase_pdf:random_phasor_sum}. - For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a uniform distribution. - } - \label{fig:random_phasor_sum:pdf:phase} - \end{subfigure} - \hfill - \begin{subfigure}{0.45\textwidth} - \includegraphics[width=\textwidth]{beacon/phasor_sum/pdfs-amplitudes.pdf} - \caption{ - A signal phasor's amplitude in the presence of noise will follow a Rician distribution. - For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution. - } - \label{fig:phasor_sum:pdf:amplitude} - \end{subfigure} - \caption{ - \protect \Todo{expand captions} - } - \label{fig:phasor_sum:pdf} -\end{figure} - -\bigskip -Like the amplitude distribution \eqref{eq:phasor_sum:pdf:amplitude}, the marginal phase distribution of \eqref{eq:phasor_sum:pdf:joint} results in two extremes cases; -weak signals correspond to the uniform distribution for \eqref{eq:noise:pdf:joint}, while strong signals are well approximated by a gaussian distribution. +Like the amplitude distribution \eqref{eq:phasor_sum:pdf:amplitude}, the marginal phase distribution of \eqref{eq:phasor_sum:pdf:joint} results in two extreme cases; +weak signals correspond to the uniform distribution for \eqref{eq:noise:pdf:joint}, while strong signals are well approximated by a gaussian distribution (see Figure~\ref{fig:random_phasor_sum:pdf:phase}). +\\ The analytic form takes the following complex expression, \begin{equation} @@ -144,5 +128,13 @@ where , \end{equation} is the error function. - +\begin{figure} + \centering + \includegraphics[width=0.5\textwidth]{beacon/phasor_sum/pdfs-phases.pdf} + \caption{ + The Random Phasor Sum phase distribution \eqref{eq:phase_pdf:random_phasor_sum}. + For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a uniform distribution. + } + \label{fig:random_phasor_sum:pdf:phase} +\end{figure} \end{document}