mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-12-22 21:13:32 +01:00
Thesis: Radio Interferometry: separate chapter
This commit is contained in:
parent
b3a5718023
commit
89ddf4cc81
3 changed files with 113 additions and 110 deletions
|
@ -10,7 +10,7 @@
|
|||
\begin{document}
|
||||
\chapter{Introduction}
|
||||
\label{sec:introduction}
|
||||
|
||||
%<<<
|
||||
% Intro Cosmic Ray
|
||||
In the beginning of the $\mathrm{20^{th}}$~century, various types of radiation were discovered.
|
||||
With the balloonflight of Victor Hess \Todo{ref} in \Todo{year}, one type was determined to come from beyond the atmosphere and named ``Cosmic Rays''.
|
||||
|
@ -29,16 +29,16 @@ However, advanced analyses require an even higher accuracy.
|
|||
\\
|
||||
In this thesis, methods (and their limits) to obtain this accuracy for radio arrays are investigated.
|
||||
|
||||
|
||||
% >>>
|
||||
\section{Cosmic Particles}%<<<<<<
|
||||
%<<<
|
||||
\label{sec:crs}
|
||||
Particles from outer space,
|
||||
Particle type,
|
||||
Energy,
|
||||
magnetic fields -- origin,
|
||||
|
||||
\hrule
|
||||
%Particles from outer space,
|
||||
%Particle type,
|
||||
%Energy,
|
||||
%magnetic fields -- origin,
|
||||
%
|
||||
%\hrule
|
||||
|
||||
% Cosmic Particles = CR + Photon + Neutrino
|
||||
There is a variety of extra terrestrial particles with which the Earth is bombarded.\Todo{rephrase}
|
||||
|
@ -69,7 +69,7 @@ Note that cosmic rays are deemed\Todo{rephrase} to be charged nuclei.
|
|||
|
||||
|
||||
% Energy
|
||||
Cosmic rays span a large range of energy as illustrated in Figure~\ref{fig:cr_flux}.
|
||||
Cosmic rays span a large range of energy and flux as illustrated in Figure~\ref{fig:cr_flux}.
|
||||
The acceleration of cosmic rays is thought to occur in highly energetic regions\Todo{expand}
|
||||
\\
|
||||
|
||||
|
@ -88,11 +88,11 @@ Likewise, with an rapidly increasing flux for lower energies, one component can
|
|||
%>>>
|
||||
\subsection{Air Showers}%<<<
|
||||
\label{sec:airshowers}
|
||||
Particle cascades,
|
||||
Xmax?,
|
||||
Radio emission,
|
||||
|
||||
\hrule
|
||||
%Particle cascades,
|
||||
%Xmax?,
|
||||
%Radio emission,
|
||||
%
|
||||
%\hrule
|
||||
When a particle with an energy above $1\;\TeV$ comes into contact with the atmosphere, secondary particles are generated, forming an air shower.
|
||||
This air shower consists of a cascade of interactions producing more particles that subsequently undergo further interactions.
|
||||
Thus, the number of particles rapidly increases further down the air shower.
|
||||
|
@ -200,103 +200,9 @@ This will be used later on and gives an insight into the timing accuracy require
|
|||
\\
|
||||
Chapter~\ref{sec:waveform} reviews typical techniques to analyse waveforms to obtain timing information.
|
||||
\\
|
||||
Chapter~\ref{sec:disciplining} introduces the concept of a beacon transmitter to synchronise an array of radio antennas using techniques from the preceding chapter to constrain the achievable timing accuracy.
|
||||
Chapter~\ref{sec:disciplining} introduces the concept of a beacon transmitter to synchronise an array of radio antennas and constrains the achievable timing accuracy using the techniques described in the preceding chapter.
|
||||
\\
|
||||
Chapter~\ref{sec:single_sine_sync} shows\Todo{word} how a sine wave beacon can synchronise an array while using the radio interferometric approach to resolve\Todo{word} an airshower.
|
||||
\\
|
||||
Finally, Chapter~\ref{sec:gnss_accuracy} investigates the limitations of the current hardware in \gls{GRAND} and its ability to record and reconstruct a beacon signal.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\cleardoublepage
|
||||
\chapter{Air Shower Radio Interferometry}
|
||||
\label{sec:interferometry}
|
||||
The radio signals emitted by the air shower (see Section~\ref{sec:airshowers}) can be recorded by radio antennas.
|
||||
An array of radio antennas can be used as an interferometer.
|
||||
Therefore, air showers can be analysed using radio interferometry.
|
||||
\\
|
||||
%
|
||||
Unlike, astronomical interferometry, the source of the signal is closeby.
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{radio_interferometry/rit_schematic_true.pdf}%
|
||||
% \includegraphics[width=0.5\textwidth]{radio_interferometry/Schematic_RIT_extracted.png}
|
||||
% \caption{From H. Schoorlemmer}
|
||||
\end{figure}
|
||||
|
||||
\begin{equation}\label{eq:propagation_delay}%<<<
|
||||
\Delta_i(\vec{x}) = \frac{ \left|{ \vec{x} - \vec{a_i} }\right| }{c} n_{eff}
|
||||
\end{equation}%>>>
|
||||
|
||||
|
||||
\begin{equation}\label{eq:interferometric_sum}%<<<
|
||||
S(\vec{x}, t) = \sum_i S_i(t + \Delta_i(\vec{x}))
|
||||
\end{equation}%>>>
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{subfigure}[t]{0.3\textwidth}
|
||||
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_bad.png}
|
||||
\label{fig:trace_overlap:bad}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[t]{0.3\textwidth}
|
||||
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_medium.png}
|
||||
\label{fig:trace_overlap:medium}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[t]{0.3\textwidth}
|
||||
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png}
|
||||
\label{fig:trace_overlap:best}
|
||||
\end{subfigure}
|
||||
\caption{
|
||||
Trace overlap due to wrong positions
|
||||
}
|
||||
\label{fig:trace_overlap}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}%
|
||||
\caption{
|
||||
From \protect \cite{Schoorlemmer:2020low}.
|
||||
$\Xmax$ resolution as a function of detector-to-detector synchronisation.
|
||||
}
|
||||
\label{fig:xmax_synchronise}
|
||||
\end{figure}
|
||||
|
||||
\section{Time Synchronisation}
|
||||
\label{sec:timesynchro}
|
||||
The main method of synchronising multiple stations is by employing a \gls{GNSS}.
|
||||
This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}).
|
||||
\\
|
||||
|
||||
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
|
||||
|
||||
%\begin{figure}
|
||||
% \centering
|
||||
% \includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
|
||||
% \caption{
|
||||
% Using a reference clock to compare two other clocks.
|
||||
% \protect \todo{
|
||||
% redo figure with less margins,
|
||||
% remove spines,
|
||||
% rotate labels
|
||||
% }
|
||||
% }
|
||||
% \label{fig:reference-clock}
|
||||
%\end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
Finally, Chapter~\ref{sec:gnss_accuracy} investigates the limitations of the current hardware of \gls{GRAND} and its ability to record and reconstruct a beacon signal.
|
||||
\end{document}
|
||||
|
|
94
documents/thesis/chapters/radio_interferometry.tex
Normal file
94
documents/thesis/chapters/radio_interferometry.tex
Normal file
|
@ -0,0 +1,94 @@
|
|||
% vim: fdm=marker fmr=<<<,>>>
|
||||
\documentclass[../thesis.tex]{subfiles}
|
||||
|
||||
\graphicspath{
|
||||
{.}
|
||||
{../../figures/}
|
||||
{../../../figures/}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
\chapter{Air Shower Radio Interferometry}
|
||||
\label{sec:interferometry}
|
||||
The radio signals emitted by the air shower (see Section~\ref{sec:airshowers}) can be recorded by radio antennas.
|
||||
An array of radio antennas can be used as an interferometer.
|
||||
Therefore, air showers can be analysed using radio interferometry.
|
||||
\\
|
||||
%
|
||||
Unlike, astronomical interferometry, the source of the signal is closeby.
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.5\textwidth]{radio_interferometry/rit_schematic_true.pdf}%
|
||||
% \includegraphics[width=0.5\textwidth]{radio_interferometry/Schematic_RIT_extracted.png}
|
||||
% \caption{From H. Schoorlemmer}
|
||||
\end{figure}
|
||||
|
||||
\begin{equation}\label{eq:propagation_delay}%<<<
|
||||
\Delta_i(\vec{x}) = \frac{ \left|{ \vec{x} - \vec{a_i} }\right| }{c} n_{eff}
|
||||
\end{equation}%>>>
|
||||
|
||||
|
||||
\begin{equation}\label{eq:interferometric_sum}%<<<
|
||||
S(\vec{x}, t) = \sum_i S_i(t + \Delta_i(\vec{x}))
|
||||
\end{equation}%>>>
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{subfigure}[t]{0.3\textwidth}
|
||||
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_bad.png}
|
||||
\label{fig:trace_overlap:bad}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[t]{0.3\textwidth}
|
||||
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_medium.png}
|
||||
\label{fig:trace_overlap:medium}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[t]{0.3\textwidth}
|
||||
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png}
|
||||
\label{fig:trace_overlap:best}
|
||||
\end{subfigure}
|
||||
\caption{
|
||||
Trace overlap due to wrong positions
|
||||
}
|
||||
\label{fig:trace_overlap}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}%
|
||||
\caption{
|
||||
From \protect \cite{Schoorlemmer:2020low}.
|
||||
$\Xmax$ resolution as a function of detector-to-detector synchronisation.
|
||||
}
|
||||
\label{fig:xmax_synchronise}
|
||||
\end{figure}
|
||||
|
||||
\section{Time Synchronisation}
|
||||
\label{sec:timesynchro}
|
||||
The main method of synchronising multiple stations is by employing a \gls{GNSS}.
|
||||
This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}).
|
||||
\\
|
||||
|
||||
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
|
||||
|
||||
%\begin{figure}
|
||||
% \centering
|
||||
% \includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
|
||||
% \caption{
|
||||
% Using a reference clock to compare two other clocks.
|
||||
% \protect \todo{
|
||||
% redo figure with less margins,
|
||||
% remove spines,
|
||||
% rotate labels
|
||||
% }
|
||||
% }
|
||||
% \label{fig:reference-clock}
|
||||
%\end{figure}
|
||||
\end{document}
|
|
@ -53,6 +53,9 @@
|
|||
%% Introduction
|
||||
\subfile{chapters/introduction.tex}
|
||||
|
||||
%% Radio Interferometry
|
||||
\subfile{chapters/radio_interferometry.tex}
|
||||
|
||||
%% Electric field from airshower to waveform analysis
|
||||
\subfile{chapters/radio_measurement.tex}
|
||||
|
||||
|
|
Loading…
Reference in a new issue