Thesis+Figures: Power and Trace overlap Single Sines

This commit is contained in:
Eric Teunis de Boone 2023-11-16 19:51:13 +01:00
parent d73dd182c3
commit ec84454b1c
20 changed files with 38 additions and 65 deletions

View file

@ -378,53 +378,15 @@ Additionally, since the true period shifts are static per event, evaluating the
\label{fig:simu:error:periods}
\end{figure}
%\begin{figure}%<<< fig:simu:sine:periods
% \centering
% \begin{subfigure}[t]{0.45\textwidth}
% \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_none.axis.trace_overlap.repair_none.pdf}
% \caption{
% Randomised clocks
% }
% \label{fig:simu:sine:periods:repair_none}
% \end{subfigure}
% \hfill
% \begin{subfigure}[t]{0.45\textwidth}
% \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}
% \caption{
% Clock syntonisation
% }
% \label{fig:simu:sine:periods:repair_phases}
% \end{subfigure}
% \\
% \begin{subfigure}[t]{0.45\textwidth}
% \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.no_offset.axis.trace_overlap.no_offset.pdf}
% \caption{
% True clocks
% }
% \label{fig:simu:sine:periods:no_offset}
% \end{subfigure}
% \hfill
% \begin{subfigure}[t]{0.45\textwidth}
% \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}
% \caption{
% Fully resolved clocks
% }
% \label{fig:simu:sine:periods:repair_full}
% \end{subfigure}
% \caption{
% Trace overlap for a position on the true shower axis for different stages of array synchronisation.
% \Todo{x-axis relative to reference waveform, remove titles, no SNR}
% }
% \label{fig:simu:sine:periods}
%\end{figure}%>>>
\begin{figure}%<<< grid power time fixes
%\vspace{-2cm}
\vspace*{-5mm}
\centering
\begin{subfigure}[t]{0.9\textwidth}
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}
\begin{subfigure}[t]{1\textwidth}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}
\hfill
\includegraphics[width=0.46\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_none.axis.X400.trace_overlap.zoomed.repair_none.pdf}
\includegraphics[width=0.47\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_none.axis.X400.trace_overlap.zoomed.repair_none.pdf}
\vspace*{-7mm}
\caption{
Randomised clocks
}
@ -432,79 +394,90 @@ Additionally, since the true period shifts are static per event, evaluating the
\end{subfigure}
%\hfill
\\
\begin{subfigure}[t]{0.9\textwidth}
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}
\begin{subfigure}[t]{1\textwidth}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}
\hfill
\includegraphics[width=0.46\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.X400.trace_overlap.zoomed.repair_phases.pdf}
\includegraphics[width=0.47\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.X400.trace_overlap.zoomed.repair_phases.pdf}
\vspace*{-7mm}
\caption{
Phase synchronisation
}
\label{fig:grid_power:repair_phases}
\end{subfigure}
\\
\begin{subfigure}[t]{0.9\textwidth}
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_full.scale4d.pdf}
\begin{subfigure}[t]{1\textwidth}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_full.scale4d.pdf}
\hfill
\includegraphics[width=0.46\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.X400.trace_overlap.zoomed.repair_full.pdf}
\includegraphics[width=0.47\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.X400.trace_overlap.zoomed.repair_full.pdf}
\vspace*{-7mm}
\caption{
Resolved clocks
}
\label{fig:grid_power:repair_full}
\end{subfigure}
\\
\begin{subfigure}[t]{0.9\textwidth}
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf}
\begin{subfigure}[t]{1\textwidth}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf}
\hfill
\includegraphics[width=0.46\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.no_offset.axis.X400.trace_overlap.zoomed.no_offset.pdf}
\includegraphics[width=0.47\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.no_offset.axis.X400.trace_overlap.zoomed.no_offset.pdf}
\vspace*{-7mm}
\caption{
True clocks
}
\label{fig:grid_power:no_offset}
\end{subfigure}
\vspace*{-7mm}
\caption{
Different stages of array synchronisation (unsynchronised, beacon synchronised, $k$-resolved and true clocks)
and
their effect on (\textit{right}) the alignment of the waveforms at the true axis
and (\textit{left}) the interferometric power near the simulation axis (red plus).
The maximum power is indicated by the blue cross.
In the right panes the vertical dashed line indicates the maximum of the reference waveform.
}
\label{fig:grid_power_time_fixes}
\end{figure}%>>>
\begin{figure}%<<< grid_power:axis:X600
\vspace*{-5mm}
\centering
\begin{subfigure}[t]{0.9\textwidth}
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X200.repair_full.scale2d.pdf}
\begin{subfigure}[t]{1\textwidth}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X200.repair_full.scale2d.pdf}
\hfill
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X200.repair_full.scale02d.pdf}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X200.repair_full.scale02d.pdf}
\vspace*{-7mm}
\caption{$X=200\,\mathrm{g/cm^2}$}
\label{fig:grid_power:axis:X200}
\end{subfigure}
\begin{subfigure}[t]{0.9\textwidth}
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_full.scale2d.pdf}
\begin{subfigure}[t]{1\textwidth}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_full.scale2d.pdf}
\hfill
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_full.scale02d.pdf}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_full.scale02d.pdf}
\vspace*{-7mm}
\caption{$X=400\,\mathrm{g/cm^2}$}
\label{fig:grid_power:axis:X400}
\end{subfigure}
\begin{subfigure}[t]{0.9\textwidth}
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X600.repair_full.scale2d.pdf}
\begin{subfigure}[t]{1\textwidth}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X600.repair_full.scale2d.pdf}
\hfill
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X600.repair_full.scale02d.pdf}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X600.repair_full.scale02d.pdf}
\vspace*{-7mm}
\caption{$X=600\,\mathrm{g/cm^2}$}
\label{fig:grid_power:axis:X600}
\end{subfigure}
\begin{subfigure}[t]{0.9\textwidth}
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X800.repair_full.scale2d.pdf}
\begin{subfigure}[t]{1\textwidth}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X800.repair_full.scale2d.pdf}
\hfill
\includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X800.repair_full.scale02d.pdf}
\includegraphics[width=0.47\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X800.repair_full.scale02d.pdf}
\vspace*{-7mm}
\caption{$X=800\,\mathrm{g/cm^2}$}
\label{fig:grid_power:axis:X800}
\end{subfigure}
\vspace*{-6mm}
\caption{
Interferometric power for the resolved clocks (from Figure~\ref{fig:grid_power:repair_full}) at four atmospheric depths for an opening angle of $2^\circ$(\textit{left}) and $0.2^\circ$(\textit{right}).
The simulation axis is indicated by the red plus, the maximum power is indicated by the blue cross.
Except for \subref{fig:grid_power:axis:X800}, the shower axis is resolved within $0.1^\circ$ of the true shower axis.
Except for \subref{fig:grid_power:axis:X800} where there is no power, the shower axis is resolved within $0.1^\circ$ of the true shower axis.
}
\label{fig:grid_power:axis}
\end{figure}