mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-11-22 15:03:35 +01:00
Thesis: BeaconDiscipline: note means not zero for sine histograms
This commit is contained in:
parent
fd965c749f
commit
fb4870028e
1 changed files with 6 additions and 3 deletions
|
@ -513,6 +513,10 @@ Figure~\ref{fig:sine:snr_histograms} shows two histograms ($N=100$) of the phase
|
||||||
It can be shown that for medium and strong signals, the phase residual will be gaussian distributed (see below).
|
It can be shown that for medium and strong signals, the phase residual will be gaussian distributed (see below).
|
||||||
The width of each fitted gaussian in Figure~\ref{fig:sine:snr_histograms} gives an accuracy on the phase offset that is recovered using the \gls{DTFT}.
|
The width of each fitted gaussian in Figure~\ref{fig:sine:snr_histograms} gives an accuracy on the phase offset that is recovered using the \gls{DTFT}.
|
||||||
\\
|
\\
|
||||||
|
Note that these distributions have non-zero means.
|
||||||
|
This might be a systematic offset.
|
||||||
|
However, this has not been investigated.
|
||||||
|
\\
|
||||||
|
|
||||||
% Signal to Noise definition
|
% Signal to Noise definition
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
|
@ -532,13 +536,12 @@ The width of each fitted gaussian in Figure~\ref{fig:sine:snr_histograms} gives
|
||||||
\caption{
|
\caption{
|
||||||
Phase residuals histograms ($N=100$) for $\mathrm{\gls{SNR}} \sim (7, 70)$.
|
Phase residuals histograms ($N=100$) for $\mathrm{\gls{SNR}} \sim (7, 70)$.
|
||||||
For medium to strong signals the phase residuals sample a gaussian distribution.
|
For medium to strong signals the phase residuals sample a gaussian distribution.
|
||||||
\protect\Todo{means not zero}
|
|
||||||
}
|
}
|
||||||
\label{fig:sine:snr_histograms}
|
\label{fig:sine:snr_histograms}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
% Random phasor sum
|
% Random phasor sum
|
||||||
For gaussian noise, the resolution of the phase measurement can be shown to be distributed by the following equation
|
For gaussian noise, the measurement of the beacon phase $\pTrue$ can be shown to be distributed by the following equation
|
||||||
(see Appendix~\ref{sec:phasor_distributions} or \cite[Chapter 2.9]{goodman1985:2.9} for derivation),
|
(see Appendix~\ref{sec:phasor_distributions} or \cite[Chapter 2.9]{goodman1985:2.9} for derivation),
|
||||||
\begin{equation}\label{eq:random_phasor_sum:phase:sine}
|
\begin{equation}\label{eq:random_phasor_sum:phase:sine}
|
||||||
\phantom{,}
|
\phantom{,}
|
||||||
|
@ -555,7 +558,7 @@ For gaussian noise, the resolution of the phase measurement can be shown to be d
|
||||||
,
|
,
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $s$ is the amplitude of the beacon, $\sigma$ the noise amplitude and $\erf{z}$ the error function.
|
where $s$ is the amplitude of the beacon, $\sigma$ the noise amplitude and $\erf{z}$ the error function.
|
||||||
\cite{goodman1985:2.9} names this equation as ``Constant Phasor plus a Random Phasor Sum''.
|
\cite{goodman1985:2.9} names this equation ``Constant Phasor plus a Random Phasor Sum''.
|
||||||
For sake of brevity, it will be referred to as ``Random Phasor Sum''.
|
For sake of brevity, it will be referred to as ``Random Phasor Sum''.
|
||||||
\Todo{use Phasor Sum instead}
|
\Todo{use Phasor Sum instead}
|
||||||
\\
|
\\
|
||||||
|
|
Loading…
Reference in a new issue