% vim: fdm=marker fmr=<<<,>>> \documentclass[../thesis.tex]{subfiles} \graphicspath{ {.} {../../figures/} {../../../figures/} } \begin{document} \chapter{Random Phasor Sum Distribution} \label{sec:phasor_distributions} %\section{Random Phasor Distribution} This section gives a short derivation of \eqref{eq:random_phasor_sum:phase:sine} using two frequency-domain phasors. Further reading can be found in Ref.~\cite[Chapter 2.9]{goodman1985:2.9} under ``Constant Phasor plus Random Phasor Sum''. \\ Write the noise phasor as $\vec{m} = a \, e^{i\pTrue}$ with phase $-\pi < \pTrue \leq \pi$ and amplitude $a \geq 0$, and the signal phasor as $\vec{s} = s \, e^{i\pTrue_s}$, but rotated such that its phase $\pTrue_s = 0$. \\ % Noise phasor description The noise phasor is fully described by the joint probability density function \begin{equation} \label{eq:noise:pdf:joint} \phantom{,} p_{A\PTrue}(a, \pTrue; \sigma) = \frac{a}{2\pi\sigma^2} e^{-\frac{a^2}{2\sigma^2}} , \end{equation} for $-\pi < \pTrue \leq \pi$ and $a \geq 0$. \\ Integrating \eqref{eq:noise:pdf:joint} over the amplitude $a$, it follows that the phase is uniformly distributed. \\ Likewise, the amplitude follows a Rayleigh distribution \begin{equation} \label{eq:noise:pdf:amplitude} %\label{eq:pdf:rayleigh} \phantom{,} p_A(a; \sigma) %= p^{\mathrm{RICE}}_A(a; \nu = 0, \sigma) = \frac{a}{\sigma^2} e^{-\frac{a^2}{2\sigma^2}} , \end{equation} for which the mean is $\bar{a} = \sigma \sqrt{\frac{\pi}{2}}$ and the standard~deviation is given by $\sigma_{a} = \sigma \sqrt{ 2 - \tfrac{\pi}{2} }$. \\ % Random phasor sum Adding the signal phasor, the mean in \eqref{eq:noise:pdf:joint} shifts from $\vec{a}^2 = a^2 {\left( \cos \pTrue + \sin \pTrue \right)}^2$ to ${\left(\vec{a} - \vec{s}\right)}^2 = {\left( a \cos \pTrue -s \right)}^2 + {\left(\sin \pTrue \right)}^2$, resulting in a new joint distribution \begin{equation} \label{eq:phasor_sum:pdf:joint} \phantom{.} p_{A\PTrue}(a, \pTrue; s, \sigma) = \frac{a}{2\pi\sigma^2} \exp[ - \frac{ {\left( a \cos \pTrue - s \right)}^2 + {\left( a \sin \pTrue \right)}^2 }{ 2 \sigma^2 } ] . \end{equation} \\ Integrating \eqref{eq:phasor_sum:pdf:joint} over $\pTrue$ one finds a Rice (or Rician) distribution for the amplitude, \begin{equation} \label{eq:phasor_sum:pdf:amplitude} %\label{eq:pdf:rice} \phantom{,} p_A(a; s, \sigma) = \frac{a}{\sigma^2} \exp[-\frac{a^2 + s^2}{2\sigma^2}] \; I_0\left( \frac{a s}{\sigma^2} \right) , \end{equation} where $I_0(z)$ is the modified Bessel function of the first kind with order zero. \\ \begin{figure} \centering \includegraphics[width=0.5\textwidth]{beacon/phasor_sum/pdfs-amplitudes.pdf} \caption{ A signal phasor's amplitude in the presence of noise will follow a Rician distribution~\eqref{eq:phasor_sum:pdf:amplitude}. For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a Rayleigh distribution. } \label{fig:phasor_sum:pdf:amplitude} \end{figure} For the Rician distribution, two extreme cases can be highlighted (as can be seen in Figure~\ref{fig:phasor_sum:pdf:amplitude}). In the case of a weak signal ($s \ll a$), \eqref{eq:phasor_sum:pdf:amplitude} behaves as a Rayleigh distribution~\eqref{eq:noise:pdf:amplitude}. Meanwhile, it approaches a gaussian distribution around $s$ when a strong signal ($s \gg a$) is presented. \begin{equation} \label{eq:strong_phasor_sum:pdf:amplitude} p_A(a; \sigma) = \frac{1}{\sqrt{2\pi}} \exp[-\frac{{\left(a - s\right)}^2}{2\sigma^2}] \end{equation}\\ Like the amplitude distribution \eqref{eq:phasor_sum:pdf:amplitude}, the marginal phase distribution of \eqref{eq:phasor_sum:pdf:joint} results in two extreme cases; weak signals correspond to the uniform distribution for \eqref{eq:noise:pdf:joint}, while strong signals are well approximated by a gaussian distribution (see Figure~\ref{fig:random_phasor_sum:pdf:phase}). \\ The analytic form takes the following complex expression, \begin{equation} \label{eq:phase_pdf:random_phasor_sum} p_\PTrue(\pTrue; s, \sigma) = \frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi } + \sqrt{\frac{1}{2\pi}} \frac{s}{\sigma} e^{-\left( \frac{s^2}{2\sigma^2}\sin^2{\pTrue} \right)} \frac{\left( 1 + \erf{ \frac{s \cos{\pTrue}}{\sqrt{2} \sigma }} \right)}{2} \cos{\pTrue} \end{equation} where \begin{equation} \label{eq:erf} \phantom{,} \erf{\left(z\right)} = \frac{2}{\sqrt{\pi}} \int_0^z \dif{t} e^{-t^2} , \end{equation} is the error function. \begin{figure} \centering \includegraphics[width=0.5\textwidth]{beacon/phasor_sum/pdfs-phases.pdf} \caption{ The Random Phasor Sum phase distribution \eqref{eq:phase_pdf:random_phasor_sum}. For strong signals, this approximates a gaussian distribution, while for weak signals, this approaches a uniform distribution. } \label{fig:random_phasor_sum:pdf:phase} \end{figure} \end{document}