Enhancing Timing Accuracy in Air Shower Radio Detectors

E.T. de Boone¹

Supervisor: dr. Harm Schoorlemmer

¹e-mail: ericteunis@deboone.nl

Ultra High Energy particles

Credit: Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

Ultra High Energy particle flux

Air Showers

From: https://opendata.auger.org/display.php?evid=172657447200

Cosmic Particles Detection

Air Shower Radio Emission

Credit: H. Schoorlemmer Cosmic Particles Detection

Interferometry: Amplitude + Timing information of the \vec{E} -field

• Measure signal $S_i(t)$ at antenna $\vec{a_i}$

Radio Interferometry

Interferometry: Amplitude + Timing information of the \vec{E} -field

- Measure signal S_i(t) at antenna a_i
- Calculate light travel time

$$\Delta_i(\vec{x}) = rac{|\vec{x} - \vec{a_i}|}{c} n_{eff}$$

 Sum waveforms accounting for time delay

$$S(\vec{x},t) = \sum S_i(t + \Delta_i(\vec{x}))$$

Interferometry: Amplitude + Timing information of the \vec{E} -field

- Measure signal $S_i(t)$ at antenna $\vec{a_i}$
- Calculate light travel time

$$\Delta_i(\vec{x}) = rac{|\vec{x} - \vec{a_i}|}{c} n_{eff}$$

 Sum waveforms accounting for time delay

$$S(\vec{x},t) = \sum S_i(t + \Delta_i(\vec{x}))$$

Interferometry: Amplitude + Timing information of the \vec{E} -field

Calculate light travel time

$$\Delta_i(\vec{x}) = rac{|\vec{x} - \vec{a_i}|}{c} n_{eff}$$

 Sum waveforms accounting for time delay

$$S(\vec{x},t) = \sum S_i(t + \Delta_i(\vec{x}))$$

Radio Interferometry: Image

Radio Interferometry

Timing in Air Shower Radio Detectors

Relative timing is important for Radio Interferometry. $(1ns @c \sim 30cm)$

Large inter-detector spacing ($\sim 1 {
m km}$)

 \mapsto Default timing mechanism: Global Navigation Satellite Systems

What is the accuracy of such systems?

Timing in Air Shower Radio Detectors

Timing in Air Shower Radio Detectors

Relative timing is important for Radio Interferometry. $(1ns @c \sim 30cm)$

Large inter-detector spacing ($\sim 1 {
m km}$)

 \mapsto Default timing mechanism: Global Navigation Satellite Systems

What is the accuracy of such systems? @Auger: $\sigma_t\gtrsim 10\mathrm{ns}$

Timing in Air Shower Radio Detectors

Timing in Radio Detectors: Beacon Synchronisation

Relative timing is important for Radio Interferometry.

Default Timing mechanism: Global Navigation Satellite Systems +Extra Timing mechanism: Beacon (Pulse, Sine)

Credit: H. Schoorlemmer

Beacon Synchronisation: Geometry

Local antenna time t'_i due to time delay $t_{{
m d}i}$, clock skew σ_i and transmitter time $t_{
m tx}$

$$t_i' = t_{tx} + t_{di} + \sigma_i$$

Credit: H. Schoorlemmer

Measured time difference:

$$\Delta t'_{12} = t'_1 - t'_2 = \Delta t_{\mathrm{d}12} + \sigma_{12} + (t_{\mathrm{tx}} - t_{\mathrm{tx}})$$

Beacon Synchronisation

Pulse Beacon

Pulse Beacon

Correlation: similarity between two signals.

Pulse Beacon Timing

Beacon Synchronisation

(Multi)Sine Beacon

Phase measurement φ'_i using Fourier Transform, k unknown:

$$t_i' = \left[\frac{\varphi_i'}{2\pi} + k\right] T$$

Beacon Synchronisation

(Multi)Sine Beacon Timing

[4]

Beacon Synchronisation: Conclusion

Pulse

- discrete
- requires template

Sine

- continuous
- ► longer trace → better SNR
- k period unknown

Beacon Synchronisation

Single Sine Synchronisation

 \boldsymbol{k} is discrete, lift the period degeneracy using the air shower radiosignal

$$t_i' = \left(\frac{\varphi_i'}{2\pi} + n_i\right)T = A_i + B_i$$

$$\Delta t'_{ij} = (A_j + B_j) - (A_i + B_i) + \Delta t'_{\varphi}$$

= $\Delta A_{ij} + \Delta t'_{\varphi} + k_{ij} T$

Single Sine Synchronisation

Single Sine Synchronisation

 \boldsymbol{k} is discrete, lift the period degeneracy using the air shower radiosignal

$$t_i' = \left(\frac{\varphi_i'}{2\pi} + n_i\right)T = A_i + B_i$$

$$\Delta t'_{ij} = (A_j + B_j) - (A_i + B_i) + \Delta t'_{\varphi}$$
$$= \Delta A_{ij} + \Delta t'_{\varphi} + k_{ij} T$$

Single Sine Synchronisation

Single Sine Synchronisation

 \boldsymbol{k} is discrete, lift the period degeneracy using the air shower radiosignal

$$t_i' = \left(\frac{\varphi_i'}{2\pi} + n_i\right)T = A_i + B_i$$

Single Sine Synchronisation

Single Sine Synchronisation Simulation

Air Shower simulation on a grid of 100×100 antennas.

Single Sine Synchronisation

Single Sine Synchronisation Simulation

Air Shower simulation on a grid of 100x100 antennas.

- Add beacon (T ~ 20ns) to antenna
- Randomise clocks
 (σ = 30ns)

Single Sine Synchronisation Simulation

Air Shower simulation on a grid of 100x100 antennas.

- Add beacon (T ~ 20ns) to antenna
- Randomise clocks
 (σ = 30ns)
- Measure phase with DTFT
- Repair clocks for small offsets
- ► Iteratively find best k_{ij}

"Interferometry" while allowing to shift by $T = 1/f_{
m beacon}$

Iterative process optimizing signal power: Scan positions finding the best $\{k_{0i}\}$ set, then evaluate on a grid near shower axis and zoom in.

"Interferometry" while allowing to shift by ${\cal T}=1/f_{
m beacon}$

Iterative process optimizing signal power: Scan positions finding the best $\{k_{0i}\}$ set, then evaluate on a grid near shower axis and zoom in.

Single Sine Synchronisation

"Interferometry" while allowing to shift by ${\cal T}=1/f_{
m beacon}$

Iterative process optimizing signal power: Scan positions finding the best $\{k_{0i}\}$ set, then evaluate on a grid near shower axis and zoom in.

"Interferometry" while allowing to shift by $\mathcal{T}=1/f_{\mathrm{beacon}}$

Iterative process optimizing signal power: Scan positions finding the best $\{k_{0i}\}$ set, then evaluate on a grid near shower axis and zoom in.

Single Sine Synchronisation: Timing Reparation

Single Sine Synchronisation

Single Sine Synchronisation: Comparison

True clock

Single Sine Synchronisation

21/22

150

100 Jan

50

0.2

Phase + Period reparation

Conclusion and Outlook

- Cosmic Particles induce Extensive Air Showers
- Relative Timing is crucial to Radio Interferometry
- Pulse and Sine beacons can synchronise effectively
- Single Sine + Air Shower works

Conclusion and Outlook

- Cosmic Particles induce Extensive Air Showers
- Relative Timing is crucial to Radio Interferometry
- Pulse and Sine beacons can synchronise effectively
- Single Sine + Air Shower works

Outlook:

- Parasitic setups, i.e. the 67MHz in Auger,
- Self-calibration using pulsed beacon

Supplemental material

Table of Contents

Airshower

- Radio Interferometry
- Beacon contamination
- Beacon Pulse
- Beacon without TX Pulse Sine
- Fourier
- GNSS clock stability In the field
- White Rabbit

Table of Contents
Single Sine Timing Result

Single Sine Timing Result

Table of Contents

Airshower development

Airshower

Radio footprint; GRAND

Credit: [2]. arXiv: 1810.09994

Airshower

Radio Interferometry: Xmax Resolution vs Timing Resolution

Radio Interferometry

Sine: Air Shower - Beacon

Beacon contamination

Filter Response and Sampling

Beacon: Pulse (single baseline)

Beacon without TX

Beacon: Pulse (single baseline)

Beacon without TX

Beacon: Pulse (3 baselines)

Beacon without TX

Beacon: Pulse (3 baselines)

Three Baseline 100 4 - 80 2 $\sum_{ij} (\Delta t_{ij}(x) - \Delta t_{ij})^2 \text{ [ns]}$ - 60 y [km] b a 0 ŝ - 40 -2 20 -4 0 -2 -4 ò ż 4 x [km]

Beacon without TX

Beacon: Pulse (multi baseline)

Beacon without TX

Beacon: Pulse (multi baseline)

Beacon without TX

Beacon: Sine (single baseline)

Beacon without TX

Beacon: Sine (single baseline)

Beacon without TX

Beacon: Sine (3 baseline)

Three Baseline

Beacon without TX

Beacon: Sine (3 baseline)

Three Baseline

Beacon without TX

Beacon: Sine (multi baseline reference antenna)

Beacon without TX

Beacon: Sine (all baselines)

All Baselines

Beacon without TX

DTFT vs DFT

(Discrete) Fourier and Phase

$$u(t) = \exp(i2\pi ft + \phi_t) \xrightarrow{\text{Fourier Transform}} f', \phi_f$$

Fourier

Phase reconstruction is easy if sample rate "correct"

What if sample rate "incorrect"?

Maximum Power frequencies and their phase

19/30

What if sample rate "incorrect"?

 \rightarrow Linear interpolation ($f_{\rm signal}$, $f_{\rm max}$, $f_{\rm submax}$, $\phi_{\rm max}$ and $\phi_{
m submax}$)

Maximum Power frequencies and their phase

What if sample rate "incorrect"?

 \rightarrow Linear interpolation ($f_{\rm signal}$, $f_{\rm max}$, $f_{\rm submax}$, $\phi_{\rm max}$ and $\phi_{
m submax}$)

What if sample rate "incorrect"?

 \rightarrow Linear interpolation (f_{signal} , f_{max} , f_{submax} , ϕ_{max} and ϕ_{submax})

GNSS clock stability I

GRAND Digitizer Unit's ADC to antennae

Channel filterchain delay experiment

GNSS clock stability

GNSS filterchain delay experiment

$\begin{array}{l} \textrm{50MHz Sinewave delay(ch1, ch2)} \\ = 46 \mathrm{ps} \pm 10 \end{array}$

GNSS clock stability

GNSS clock stability II

GNSS stability experiment

GNSS clock stability

GNSS clock stability

GNSS clock stability III

GNSS clock stability

Precision Time Protocol

 Time synchronisation over (long) distance between (multiple) nodes

[3] Precision Time Protocol messages.

White Rabbit

White Rabbit

White Rabbit:

- SyncE (common oscillator)
- PTP (synchronisation)

Factors:

master

t,O

t.o

 \blacktriangleright device $(\Delta_{txm}, \Delta_{rxs}, ...)$ \blacktriangleright link (δ_{ms} , ...)

Credit: [3]

White Rabbit

White Rabbit Clock Reference

White Rabbit

References I

- A. Aab et al. 'Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers'. In: JINST 11.01 (Jan. 2016), P01018. DOI: 10.1088/1748-0221/11/01/P01018. arXiv: 1512.02216 [physics.ins-det].
- Jaime Álvarez-Muñiz et al. 'The Giant Radio Array for Neutrino Detection (GRAND): Science and Design'. In: Sci. China Phys. Mech. Astron. 63.1 (2020), p. 219501. DOI: 10.1007/s11433-018-9385-7. arXiv: 1810.09994 [astro-ph.HE].
- [3] E. Cota et al. White Rabbit Specification: Draft for Comments. www.ohwr.org/attachments/1169/WhiteRabb itSpec.v2.0.pdf. July 2011.

References II

- Joseph W. Goodman. 'Statistical Optics'. en. In: 2nd ed. Wiley Series in Pure and Applied Optics. Nashville, TN: John Wiley & Sons, Apr. 2015. Chap. 2.9. ISBN: 978-1-119-00945-0.
- [5] Tim Huege. 'Radio detection of extensive air showers'. In: Nucl. Instrum. Meth. A 876 (2017). Ed. by P. Krizan et al., pp. 9-12. DOI: 10.1016/j.nima.2016.12.012. arXiv: 1701.02995 [astro-ph.IM].
- [6] Harm Schoorlemmer et al. 'Radio interferometry applied to the observation of cosmic-ray induced extensive air showers'. In: Eur. Phys. J. C 81.12 (2021), p. 1120. DOI: 10.1140/epjc/s10052-021-09925-9. arXiv: 2006.10348 [astro-ph.HE].
References III

[7] Frank G. Schröder. 'Radio detection of Cosmic-Ray Air Showers and High-Energy Neutrinos'. In: Prog. Part. Nucl. Phys. 93 (2017), pp. 1–68. DOI: 10.1016/j.ppnp.2016.12.002. arXiv: 1607.08781 [astro-ph.IM].