\documentclass[showdate=false]{beamer} \usepackage[british]{babel} \usepackage{amsmath} \usepackage{hyperref} \usepackage[backend=bibtex,style=trad-plain]{biblatex} \usepackage{graphicx} \graphicspath{{.}{../../figures/}} \usepackage{todo} \usepackage{physics} \usepackage{cancel} \addbibresource{../../../bibliotheca/bibliography.bib} % Disable Captions \setbeamertemplate{caption}{\raggedright\small\insertcaption\par} % Show Section overview at beginning of section %\AtBeginSection[] %{ % \begin{frame}{Table of Contents} % \tableofcontents[currentsection, currentsubsection, sectionstyle=show/shaded, subsectionstyle=hide] % \end{frame} %} % no to navigation, yes to frame numbering \beamertemplatenavigationsymbolsempty \setbeamerfont{page number in head/foot}{size=\normalsize} \setbeamertemplate{footline}[frame number] \title[Beacon Timing]{Enhancing Timing Accuracy using Beacons} \date{Apr 13, 2023} \author{E.T. de Boone} \newcommand{\pTrue}{\phi} \newcommand{\PTrue}{\Phi} \newcommand{\pMeas}{\varphi} \newcommand{\pTrueEmit}{\pTrue_0} \newcommand{\pTrueArriv}{\pTrueArriv'} \newcommand{\pMeasArriv}{\pMeas_0} \newcommand{\pProp}{\pTrue_d} \newcommand{\pClock}{\pTrue_c} \begin{document} \frame{\titlepage} \begin{frame}{Enhancing time accuracy} \begin{block}{} Goal: $\sigma_{ij} < 1\mathrm{ns}$ (enabling Radio Interferometry) \end{block} \begin{block}{Strategy} \begin{itemize} \item Simulating beacons (both pulse and sine) \item Characterising GNSS (GRAND) \end{itemize} \end{block} \end{frame} % Antenna Setup \section{Beacon} \begin{frame}{Antenna Setup} \vskip -2em Local antenna time $t'_i$ due to time delay $t_{\mathrm{d}i}$ and clock skew $\sigma_i$ \\ \begin{figure} \includegraphics[width=0.6\textwidth]{beacon/antenna_setup_two.pdf} \end{figure} \vskip -2em \begin{equation*} \Delta t'_{12} = t'_1 - t'_2 = \Delta t_{\mathrm{d}12} + \sigma_{12} + (t_{tx} - t_{tx}) \end{equation*} \end{frame} \begin{frame}{Beacon: Sine: Two traces} Required signal: sine (beacon) + single pulse \begin{equation*} t'_i = (\frac{\varphi'_i}{2\pi} + n_i)T = A_i + B_i \end{equation*} \begin{figure} \includegraphics<1>[width=1\textwidth]{beacon/08_beacon_sync_timing_outline.pdf} \includegraphics<2>[width=1\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf} \end{figure} \begin{align*} \Delta t'_{ij} &= (A_j + B_j) - (A_i + B_i) + \Delta t'_\varphi \\ &= \Delta A_{ij} + \only<1>{\Delta t'_\varphi}\only<2->{\cancel{\Delta t'_\varphi}} + k_{ij}T\\ \end{align*} \end{frame} \begin{frame}{Beacon: Sine: Two traces: Discrete solutions} \begin{figure} \includegraphics<1>[width=1\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf} \includegraphics<2->[width=1\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf} \end{figure} \begin{figure} \includegraphics<-2>[width=1\textwidth]{beacon/08_beacon_sync_coherent_sum.pdf} \end{figure} \only<3>{\begin{equation*}\Delta t'_{ij} = \Delta A_{ij} + \cancel{\Delta t'_\varphi} + \cancel{k_{ij}T} \end{equation*}} \only<3>\vfill \end{frame} \section{Simulations} \begin{frame}{Simulation: Sine} Apply previous steps to an airshower simulation (which provides the pulse): \begin{block}{} \begin{itemize} \item Add (sine) beacon to each antenna \item Shift clocks \item Measure phase \item Repair clocks for small offset $\Delta t'_{ij}$ \item Iteratively find best $k_{ij}$ \end{itemize} \end{block} \end{frame} \begin{frame}{Simulation: Antenna Setup} \begin{columns} \begin{column}{0.5\textwidth} \begin{figure} \includegraphics[width=\textwidth]{ZH_simulation/tx_array_geometry.png} \end{figure} \end{column} \hfill \begin{column}{0.45\textwidth} \begin{figure} \includegraphics[width=\textwidth]{ZH_simulation/array_geometry_beacon_amplitude.png} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Simulation: Measure Local Phase} \begin{block}{} @Antenna $i$: measure phase $\varphi_i$ using DTFT, get $\varphi(\sigma_i) = \varphi_i - \varphi(t_0) - \varphi(t_{\mathrm{d}i})$ \end{block} \begin{figure} \includegraphics<1>[width=0.8\textwidth]{ZH_simulation/ba_measure_beacon_phase.py.A74.no_mask.pdf} \includegraphics<2>[width=0.8\textwidth]{ZH_simulation/ba_measure_beacon_phase.py.A74.masked.pdf} \end{figure} \end{frame} \begin{frame}{Simulation: Phase measurement} Beacon frequency: $51.53~\mathrm{MHz}$ \begin{figure} \includegraphics<1>[width=0.8\textwidth]{ZH_simulation/bd_antenna_phase_deltas.py.phase.residuals.c5_b_N4096_noise1e1.pdf} \includegraphics<2>[width=0.45\textwidth]{ZH_simulation/bd_antenna_phase_deltas.py.phase.residuals.c5_b_N4096_noise1e1.pdf} \hfill \includegraphics<2>[width=0.45\textwidth]{ZH_simulation/bd_antenna_phase_deltas.py.phase.residuals.c5_b_N4096_noise1e3.pdf} \\ \vspace{0.5cm} \includegraphics<2>[width=0.45\textwidth]{ZH_simulation/bd_antenna_phase_deltas.py.phase.residuals.c5_b_N4096_noise1e4.pdf} \hfill \includegraphics<2>[width=0.45\textwidth]{ZH_simulation/bd_antenna_phase_deltas.py.phase.residuals.c5_b_N4096_noise1e5.pdf} \end{figure} \end{frame} \begin{frame}{Simulation: Signal to Noise} \begin{figure} \includegraphics[width=0.8\textwidth]{beacon/time_res_vs_snr.pdf} \end{figure} \begin{columns} \begin{column}{0.3\textwidth} \end{column} \begin{column}{0.7\textwidth} \tiny\begin{equation*} p_\PTrue(\pTrue; s, \sigma) = \frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi } + \sqrt{\frac{1}{2\pi}} \frac{s}{\sigma} e^{-\left( \frac{s^2}{2\sigma^2}\sin^2{\pTrue} \right)} \frac{\left( 1 + \erf{ \frac{s \cos{\pTrue}}{\sqrt{2} \sigma }} \right)}{2} \cos{\pTrue} \end{equation*} \tiny{Random Phasor Sum: ``Statistical Optics'', J. Goodman} \end{column} \end{columns} \end{frame} \begin{frame}{Simulation: Phase: Baseline} \begin{block}{Correction to previous talk: modifies global phase only} @Baseline $i,j$: $\Delta \varphi_{ij} = \varphi(\sigma_i) - \varphi(\sigma_j)$ \\ Minimise matrix: \tiny$\left(\begin{matrix} \Delta_{11} & \Delta_{12} & \Delta_{13} & \\ \Delta_{21} & \Delta_{22} & \Delta_{23} & \\ \Delta_{31} & \Delta_{32} & \Delta_{33} & \\ \end{matrix}\right)$ \end{block} \begin{figure} \includegraphics<1>[width=0.8\textwidth]{ZH_simulation/bc_baseline_phase_deltas.py.residuals.c5_b_N4096_noise1e3.pdf} \end{figure} \end{frame} \begin{frame}{Simulation: Period $k_i$} \small{ Interferometry while allowing to shift by $T = 1/f_\mathrm{beacon}$ \\ Iterative process: \\ \; Scan positions finding the best $\{k_i\}$ set, then zoom in on strongest. } \only<1-4>{\begin{figure} \includegraphics<1>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.run0.i5.loc8.0-2795.4-7816.0.pdf} \includegraphics<2>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.run0.i99.loc8.0-2795.4-7816.0.pdf} \includegraphics<3>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run0.pdf} \includegraphics<4>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run0.power.pdf} \end{figure}} \only<5>{\begin{figure} \includegraphics[width=0.45\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run0.pdf} \hfill \includegraphics[width=0.45\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run0.power.pdf} \vspace{0.5cm} \includegraphics[width=0.45\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run1.pdf} \hfill \includegraphics[width=0.45\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run1.power.pdf} \end{figure}} \end{frame} \begin{frame}{Simulation: Effects of Corrections} Found both phase and period differences \visible<2->{\begin{figure} \includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf} \hfill \includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf} \vspace{0.5cm} \includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf} \hfill \includegraphics[width=0.45\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf} \end{figure}} \end{frame} \begin{frame}{Simulation Conclusions} \begin{columns} \begin{column}{0.5\textwidth} \begin{itemize} \item (Single) Sine beacon:\\ $\sigma < 1\mathrm{ns}$ from $\mathrm{SNR} > 3$\\ depends on beacon period. \vspace{1cm} \item Pulsed beacon:\\ (small) ongoing work\\ while writing thesis. \end{itemize} \end{column} \begin{column}{0.5\textwidth} \begin{figure} \includegraphics[width=1.1\textwidth]{beacon/time_res_vs_snr.pdf} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Simulation: Effects of Corrections (fullsize)} \begin{figure} \includegraphics<+>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf} \includegraphics<+>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf} \includegraphics<+>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf} \includegraphics<+>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf} \end{figure} \end{frame} \begin{frame}{Signal to Noise definition} \begin{figure} \includegraphics[width=\textwidth]{ZH_simulation/signal_to_noise_definition.pdf} \end{figure} \end{frame} \end{document}