\documentclass[showdate=false]{beamer} %%%%%%%% % Goal: show enthousiasm, knowledge and drive about the field \usepackage[british]{babel} \usepackage{amsmath} \usepackage{hyperref} \usepackage[backend=bibtex,style=trad-plain]{biblatex} \usepackage{appendixnumberbeamer} \usepackage{graphicx} \graphicspath{{.}{./figures/}{../../figures/}} \usepackage{todo} \addbibresource{../../../bibliotheca/bibliography.bib} % Disable Captions \setbeamertemplate{caption}{\raggedright\small\insertcaption\par} % no to navigation, yes to frame numbering \beamertemplatenavigationsymbolsempty \setbeamerfont{page number in head/foot}{size=\normalsize} \setbeamertemplate{footline}[frame number] \hypersetup{pdfpagemode=UseNone} % don't show bookmarks on initial view \title[Early contest STEP-UP: Investigating interferometry with GRAND and BEACON]{ { \large Early contest STEP-UP: }\\ { Investigating interferometry with\\ GRAND\footnote{Giant Radio Array for Neutrino Detection} and BEACON\footnote{Beam forming Elevated Array for COsmic Neutrinos} } } \date{March $13^{\text{\tiny{th}}}$, 2023} \author{ E.T. de Boone \\ \vspace{2em} Advisor: Olivier Martineau, LPNHE\\ \quad\quad\quad\quad\quad Harm Schoorlemmer, IMAPP } \begin{document} { \setbeamertemplate{footline}{} % no page number here \section{Talk} \frame{ \titlepage } } \begin{frame}{My studies} Studies @Radboud University, Nijmegen \begin{itemize} \item Bachelor from 2012 to 2020 \\ \quad {\small Minor: Astrophysics} \item Master from 2020 to 2023 (expected) \\ \quad {\small Specialisation: Particle and Astrophysics}\\ \quad {\small Minor: Computational Data Science} \item Master's Internship (November 2021 - May 2023) \\ \quad {\small Supervisor: Harm Schoorlemmer, IMAPP, Radboud University}\\ \quad {\small ``Enhancing Timing Accuracy in Air Shower Radio Detectors''} \end{itemize} \vspace*{2em} Interests: \begin{itemize} \item Hardware experimenting \item Ultra High Energy particles \item Radio detection \end{itemize} \end{frame} % Context %%%%%%%%% \begin{frame}{Ultra High Energy particles} \begin{figure} \includegraphics[width=\textwidth]{grand/astroparticletypes_grand.jpg} % \caption{ % From: \cite{GRAND:2018ia} % } \end{figure} \end{frame} \begin{frame}{Radio signals and Airshowers} \begin{figure} \includegraphics[width=\textwidth]{grand/GRAND-detection-principle-1.png} % \caption{ % From: \cite{GRAND:2018ia} % } \end{figure} \end{frame} \begin{frame}{Advantages of Radio Interferometry} \begin{columns} \begin{column}{0.5\textwidth} \begin{itemize} \item<1-> Shower axis reconstruction%\; Relevant for $\nu$s pointing back to sources \vspace*{2em} \item<2-> Depth of airshower\\ $\mapsto$ composition measurement (Fe, p, $\gamma$, $\nu$) \end{itemize} \end{column} \begin{column}{0.5\textwidth} \begin{figure} \includegraphics<1,2>[width=\textwidth]{2006.10348/fig01.png} \includegraphics<3>[width=\textwidth]{2006.10348/fig03_b.png} %\includegraphics<2>[width=\textwidth]{1607.08781/fig02b_longitudinal_shower_profile.png} % \caption{ % From: \cite{Schoorlemmer:2020low} % } \end{figure} \end{column} \end{columns} \end{frame} % Radio Interferometry %%%%%%%%%%%%%%%%%%%%%% \section{Radio Interferometry Concept} \begin{frame}{Radio Interferometry: Concept} \begin{columns} \begin{column}{0.4\textwidth} \begin{figure} \includegraphics[width=\textwidth]{radio_interferometry/Schematic_RIT_extracted.png} \end{figure} \end{column} \begin{column}{0.6\textwidth} \vspace*{\fill} \begin{itemize} \item<1-> Measure signal $S_i(t)$ at antenna $\vec{a_i}$ \item<2-> Calculate light travel time \\[5pt] $\Delta_i(\vec{x}) = \frac{ \left| \vec{x} - \vec{a_i} \right| }{c} n_{eff}$ \item<2-> Sum waveforms accounting \\ for time delay \\[5pt] $S(\vec{x}, t) = \sum S_i( t + \Delta_i(\vec{x}) )$ \end{itemize} \vspace*{\fill} \begin{figure}% Spatially \includegraphics<1>[width=0.8\textwidth]{radio_interferometry/single_trace.png}% \includegraphics<2>[width=0.8\textwidth]{radio_interferometry/trace_overlap_bad.png}% \includegraphics<3>[width=0.8\textwidth]{radio_interferometry/trace_overlap_medium.png}% \includegraphics<4>[width=0.8\textwidth]{radio_interferometry/trace_overlap_best.png}% \end{figure} \end{column} \end{columns} \end{frame} % My Internship %%%%%%%%%%%%%%% \begin{frame}{Timing Constraint for Radio Interferometry} \vspace*{ -2em } Required time accuracy $< 1 \mathrm{ns}$ not provided by GNSS $ \gtrsim 5 \mathrm{ns}$. \vspace{ 2em } \begin{columns} \begin{column}{0.5\textwidth} \visible<2->{Additional synchronisation\\ using physics band } \begin{itemize} \item<2-> Pulsed beacon \item<2-> Long period ($\sim 1 \mathrm{\mu s}$)% (AERA) \item<3-> Short period ($\lesssim 20 \mathrm{ns}$) \end{itemize} \end{column} \begin{column}{0.5\textwidth} \begin{figure}% Clock error fixes \includegraphics<1>[width=\textwidth]{radio_interferometry/trace_overlap/dc_grid_power_time_fixes.py.scale4d.best.trace_overlap.zoomed.repair_none.png}% \includegraphics<2>[width=\textwidth]{radio_interferometry/trace_overlap/dc_grid_power_time_fixes.py.scale4d.best.trace_overlap.zoomed.no_offset.png}% \includegraphics<3>[width=\textwidth]{radio_interferometry/trace_overlap/dc_grid_power_time_fixes.py.scale4d.best.trace_overlap.zoomed.repair_phases.png}% \includegraphics<4>[width=\textwidth]{radio_interferometry/trace_overlap/dc_grid_power_time_fixes.py.scale4d.best.trace_overlap.zoomed.repair_all.png}% \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{My Internship: Enhancing Timing Accuracy in Air Shower Radio Detectors} \vspace{1em} In-band mechanisms affect physics data \\ How often should we `resynchronise'? \\ \begin{itemize} \item GNSS clock stability \item dead-time \item disruptiveness \end{itemize} \vspace{1em} \vfill \begin{columns} \begin{column}{0.6\textwidth} \includegraphics<1>[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf} \includegraphics<2>[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf} \end{column} \begin{column}{0.4\textwidth} \includegraphics[width=\textwidth]{beacon/time_res_vs_snr.pdf} \end{column} \end{columns} \end{frame} % Towards GRAND %%%%%%%%%%%%%%%%%%%% \begin{frame}{GRAND and Interferometry} \begin{columns} \begin{column}{0.6\textwidth} GRAND in heavy development\\ relying on radio measurements \vspace{2em} Special interest in horizontal showers\\ \vspace{2em} Neutrino's point back to source\\ \visible<2->{ \vspace*{\fill} \begin{center} \begin{minipage}{.6\textwidth} \hrule \centering \vspace{ 2em } \textit{Thank you!} \end{minipage} \end{center} %\vspace{ 4em } } \end{column} \begin{column}{0.4\textwidth} \begin{figure} \includegraphics<1>[width=\textwidth]{2006.10348/fig03_b.png} \includegraphics<2>[width=\textwidth]{2006.10348/fig01_a.png} % \caption{ % From: \cite{Schoorlemmer:2020low} % } \end{figure} \end{column} \end{columns} \end{frame} %%%%%%%%%%%%%%% % Backup slides %%%%%%%%%%%%%%% \appendix \section{Supplemental material} \begin{frame}[c] \centering \Large { \textcolor{blue} { Supplemental material } } \end{frame} \begin{frame}{Airshower development} \begin{figure} \includegraphics[width=\textwidth]{1607.08781/fig02a_airshower+detectors.png} % \caption{ % From \cite{Schroder:2016hrw} % } \end{figure} \end{frame} \subsection{Radio Emission} \begin{frame}{Polarised Radio Emission} \begin{columns} \begin{column}{0.2\textwidth} \centering Geosynchrotron \end{column} \begin{column}{0.7\textwidth} \includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}% \end{column} \end{columns} \vfill \begin{columns} \begin{column}{0.2\textwidth} \centering Askaryan \end{column} \begin{column}{0.7\textwidth} \includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}% \end{column} \end{columns} % \vfill % From: \cite{Huege:2017bqv} \end{frame} %%%%%%%%% \subsection{Single frequency beacon synchronisation} \begin{frame}{Short period beacon synchronisation} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/08_beacon_sync_timing_outline.pdf}% \includegraphics<2>[width=\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf}% \includegraphics<3>[width=\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf}% \end{figure} \end{frame} \begin{frame}{Time resolving short period beacon} \begin{figure} \includegraphics<1>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf} \includegraphics<2>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf} \includegraphics<3>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf} \includegraphics<4>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf} \end{figure} \end{frame} %%%%%%%%%% \subsection{GNSS clock stability} \begin{frame}{GNSS clock stability I} \begin{columns} \begin{column}{0.4\textwidth} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{grand/setup/antenna-to-adc.pdf} \caption{ GRAND Digitizer Unit's ADC to antennae } \end{figure} \end{column} \hfill \begin{column}{0.5\textwidth} \begin{figure} \includegraphics[width=\textwidth]{grand/setup/channel-delay-setup.pdf}% \caption{ Channel filterchain delay experiment } \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{GNSS clock stability II} \begin{figure} \centering \includegraphics[width=0.7\textwidth]{grand/setup/grand-gps-setup.pdf} \caption{ GNSS stability experiment } \end{figure} \end{frame} \subsubsection{In the field} \begin{frame}{GNSS clock stability II} \begin{columns} \begin{column}{0.5\textwidth} \includegraphics[width=\textwidth]{images/IMG_20220819_154801.jpg} \end{column} \begin{column}{0.5\textwidth} \includegraphics[width=\textwidth]{images/IMG_20220815_161244.jpg} \end{column} \end{columns} \end{frame} %%%%%%%%%%%%%% % Bibliography %%%%%%%%%%%%%% \section*{References} \begin{frame}{References} \printbibliography \end{frame} \end{document}