%\documentclass[notes]{beamer} \documentclass[]{beamer} %%%%%%%% % Goal: show enthousiasm, knowledge and drive about the field \usepackage[british]{babel} \usepackage{amsmath} \usepackage{hyperref} \usepackage[backend=bibtex,style=trad-plain]{biblatex} \usepackage{appendixnumberbeamer} \usepackage{graphicx} \usepackage{tikz} \graphicspath{{.}{./figures/}{../../figures/}} \usepackage{todo} \addbibresource{../../../bibliotheca/bibliography.bib} \newcommand{\imagesource}[1]{~\\[0pt]\vspace*{-7pt}\hspace*{10pt}\hbox{\tiny#1}} \newcommand{\imagecredit}[1]{\imagesource{Credit:\thinspace#1}} \newcommand{\imagecite}[1]{\imagesource{\textcite{#1}}} % Disable Captions \setbeamertemplate{caption}{\raggedright\small\insertcaption\par} % no to navigation, yes to frame numbering \beamertemplatenavigationsymbolsempty \setbeamerfont{page number in head/foot}{size=\normalsize} \setbeamertemplate{page number in head/foot}{\insertframenumber/\inserttotalframenumber} %\setbeamercolor{page number in head/foot}{fg=red} \setbeamerfont{section in head/foot}{size=\small} \setbeamercolor{section in head/foot}{fg=gray} \setbeamertemplate{section in head/foot}{\textit{\insertsectionhead}} %\setbeamertemplate{footline}[frame number] \setbeamertemplate{footline} {% \leavevmode% \hbox{% \begin{beamercolorbox}[wd=.7\paperwidth,ht=2.25ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{title in head/foot}% \usebeamertemplate*{section in head/foot}% \hfill% \end{beamercolorbox} \begin{beamercolorbox}[wd=.1\paperwidth,ht=2.25ex,dp=1ex,sep=0pt]{my empty section} \hfill% \end{beamercolorbox} \begin{beamercolorbox}[wd=.2\paperwidth,ht=2.25ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{page number in head/foot}% \hfill% \usebeamertemplate*{page number in head/foot}% \end{beamercolorbox}}% } %% From https://tex.stackexchange.com/a/55849 % Keys to support piece-wise uncovering of elements in TikZ pictures: % \node[visible on=<2->](foo){Foo} % \node[visible on=<{2,4}>](bar){Bar} % put braces around comma expressions % % Internally works by setting opacity=0 when invisible, which has the % adavantage (compared to \node<2->(foo){Foo} that the node is always there, hence % always consumes space plus that coordinate (foo) is always available. % % The actual command that implements the invisibility can be overriden % by altering the style invisible. For instance \tikzsset{invisible/.style={opacity=0.2}} % would dim the "invisible" parts. Alternatively, the color might be set to white, if the % output driver does not support transparencies (e.g., PS) % \tikzset{ invisible/.style={opacity=0}, visible on/.style={alt={#1{}{invisible}}}, alt/.code args={<#1>#2#3}{% \alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}} % \pgfkeysalso doesn't change the path }, } \hypersetup{pdfpagemode=UseNone} % don't show bookmarks on initial view \title[STEP-UP: Interferometry in GRAND]{% and BEACON]{ { \large STEP'UP Interview}\\ { Investigating interferometry in\\ GRAND\footnote{Giant Radio Array for Neutrino Detection} % and BEACON\footnote{Beam forming Elevated Array for COsmic Neutrinos} } } \date{June, 2023} \author[E.T. de Boone]{ E.T. de Boone \\ \vspace{2em} Advisors: Olivier Martineau, LPNHE\\ \quad\quad\quad\quad\quad\, Harm Schoorlemmer, IMAPP } \begin{document} { \setbeamertemplate{footline}{} % no page number here \frame{ \titlepage } } \section{My Background} \begin{frame}{My Background} Studies @Radboud University, Nijmegen \begin{itemize} \item Master's Physics and Astronomy {\small (\textit{1yr courses + 1yr internship})}\\ \quad { \small Specialisation: Particle and Astrophysics }\\ \quad { \small Minor: Computational Data Science }\\ \vspace*{1em} \item Master's Internship: \\ \quad {\small Supervisor: Harm Schoorlemmer, IMAPP, Radboud University}\\ \quad {\small ``Enhancing Timing Accuracy in Air Shower Radio Detectors'' }\\ \end{itemize} \end{frame} \note[itemize]{ \item Interests since Bachelor's, continued in Master's \begin{itemize} \item Ultra High Energy particles \item Radio detection \& Hardware experimenting \end{itemize} \item Now wrapping up Master and full year's worth of internship \item Why start internship? (Experimental) } % Cosmic Rays and Radio %%%%%%%%% \section{Radio and Airshowers} \begin{frame}{Ultra High Energy particles} \begin{figure} \includegraphics[width=\textwidth]{grand/astroparticletypes_grand.jpg}% \imagecite{GRAND:2018iaj} \end{figure} \end{frame} \note[itemize] { \item Ultra High Energies (EeV $10^{18}$ eV) (Sources) \item Propagation effects (Magnetic Field deflections, Horizons) \item Multiple classes (Different combinations of effects) } %% \begin{frame}{Air Showers: Atmospheric Depth \& Composition} \begin{columns} \begin{column}{0.45\textwidth} \begin{figure} \hspace*{-1em} %\scriptsize{TODO: Xmax figure showing difference for photon/proton} %\includegraphics[width=\textwidth]{1607.08781/fig02b_longitudinal_shower_profile.png}% %\imagecite{Schroder:2016hrv} \includegraphics[width=\textwidth]{airshower/shower_development_depth_iron_proton_photon.pdf}% \imagecredit{H. Schoorlemmer} \end{figure} \end{column} \begin{column}{0.45\textwidth} Enhanced Xmax measurement with Interferometry\\ $\mapsto$ composition measurement\\ \begin{figure} \centering \includegraphics[width=\textwidth]{2006.10348/fig03_b.png}% \imagecite{Schoorlemmer:2020low} \end{figure} %photon/proton/Fe differences\\ %\begin{figure} % \centering % \includegraphics[width=0.7\textwidth]{2006.10348/fig01.png}% % \imagecite{Schoorlemmer:2020low} %\end{figure} %\vspace*{1em} \end{column} \end{columns} \end{frame} \note[itemize] { \item Statistical discrimation: high Z at high altitudes \item Radio Interferometry helps in Xmax measurement } % GRAND %%%%%%%%%%%%%%% \section{GRAND} \begin{frame}{Giant Radio Array for Neutrino Detection} %\begin{columns} % \begin{column}{0.45\textwidth} % \begin{figure} % \hspace*{-2em} % \includegraphics[width=1.3\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}% % \end{figure} % \vfill % \end{column} % \hfill % \begin{column}{0.45\textwidth} \begin{figure} % \hspace*{-2em} \includegraphics[width=1\textwidth]{grand/GRAND-detection-principle-1.png}% \imagecite{GRAND:2018iaj} \end{figure} % \end{column} %\end{columns} %200 000 Radio Antennas $\mapsto$ largest Cosmic Ray observatory\\ \end{frame} \note[itemize] { \item GRAND radio-only, heavy development \item pathfinders upto 2026 (Auger reference, Europe testbed, China array) \item ultra high energy has low hits, need large area } % RI in GRAND %%%%%%%%%%%%% %\section{Radio Interferometry} %\begin{frame}{Radio Interferometry} % \begin{columns} % \begin{column}{0.6\textwidth} % Enhanced measurements: % \begin{itemize} % \item Shower depth \\ % $\mapsto$ composition measurement\\ % \item Shower axis reconstruction % \item Detector noise suppression\\ % \end{itemize} % % \vspace*{2em} % % Problem: synchronisation $\Delta t < \frac{1}{4f}$\\ % \end{column} % \begin{column}{0.4\textwidth} % \begin{figure} % \centering % \includegraphics[width=\textwidth]{2006.10348/fig01_a.png}% % \imagecite{Schoorlemmer:2020low} % \end{figure} % \end{column} % \end{columns} %\end{frame} \section{Implementing Interferometry in GRAND} \begin{frame}{Time synchronisation} %\vspace*{-2em} Interferometry: Amplitude + Timing information of the $\vec{E}$-field\\ \vspace*{ 0.8em } Required time accuracy $< \frac{1}{4f} \sim 1 \mathrm{ns}$ (GNSS $\gtrsim 5 \mathrm{ns}$) \vspace*{ 0.8em } %Problem: Interferometry requires $\Delta t < \frac{1}{4f}$\\ %\vspace*{1em} Internship: \\ \quad schemes to synchronise using extra physics band signal\\ % \quad synchronisation with a single beacon in simulations\\ (algorithm) % \quad (pulse and single frequency) \vspace*{ 0.5em } \begin{columns} %\hfill \begin{column}{0.3\textwidth} \includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_none.axis.trace_overlap.repair_none.pdf}% \vfill \includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}% \end{column} \hfill \begin{column}{0.3\textwidth} \includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}% \vfill \includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}% \end{column} \hfill \begin{column}{0.3\textwidth} \includegraphics[width=1.1\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}% \vfill \includegraphics[width=1.1\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}% \end{column} \hfill \end{columns} \end{frame} \begin{frame}{Timing Synchronisation: Beacon} \begin{figure} \begin{tikzpicture} \node[anchor=south west, inner sep=0] (image) at (0,0) {\includegraphics[width=0.8\textwidth]{beacon/array_setup_gps_transmitter_cows.png}}; \begin{scope}[x={(image.south east)}, y={(image.north west)}] %\draw[help lines,xstep=.1,ystep=.1] (0,0) grid (1,1); %\foreach \x in {0,1,...,9} { \node [anchor=north] at (\x/10,0) {0.\x}; } %\foreach \y in {0,1,...,9} { \node [anchor=east] at (0,\y/10) {0.\y}; } \draw[red, ultra thick, visible on=<2>] (0.85,0.87) circle [radius=8mm]; \draw[green, ultra thick, visible on=<3>] (0.23,0.32) circle [radius=8mm]; \end{scope} \end{tikzpicture} \imagecredit{H. Schoorlemmer} \end{figure} \end{frame} \note{ Single frequency interest due to Auger (TV@67MHz) } \begin{frame}{Radio Interferometry in GRAND} \begin{figure} \centering \only<1>{\hspace*{-2em}} \includegraphics<1>[width=1.13\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}% \includegraphics<2->[width=0.5\textwidth]{grand/roadmap-per-2023-01-shortened.jpg}% \imagesource{Adapted from \url{https://grand.cnrs.fr/overview/roadmap/}} \end{figure} \only<2-> { Timing Requirements:\\ \quad synchronisation schemes investigated in internship,\\ \quad opportunity to implement and test (e.g.~Nan\c{c}ay)\\ } \only<3-> { \vspace*{1em} Interferometric Analyses:\\ \quad enhances Xmax resolution\\ } \vspace{\stretch{100}} %\vspace*{2em} %GRAND Goals:\\ % \quad Largest UHECR observatory, \\ % \quad Multi-messenger science case,\\ % \quad meaningful contribution to a new experiment\\ %\end{frame} %\begin{frame}{Radio Interferometry in GRAND} % \visible<2->{ % \vspace*{\fill} % \begin{center} % \begin{minipage}{.6\textwidth} % \hrule % \centering % \vspace{ 2em } % \textit{Thank you!} % \end{minipage} % \end{center} % %\vspace{ 4em } % } \end{frame} %%%%%%%%%%%%%%% % Backup slides %%%%%%%%%%%%%%% \appendix \section{Supplemental material} \begin{frame}[c] \centering \Large { \textcolor{blue} { Supplemental material } } \end{frame} \begin{frame}{Airshower development} \begin{figure} \includegraphics[width=0.9\textwidth]{1607.08781/fig02a_airshower+detectors.png} \imagecite{Schroder:2016hrv} \end{figure} \end{frame} \subsection{Radio Emission} \begin{frame}{Polarised Radio Emission} \begin{columns} \begin{column}{0.2\textwidth} \centering Geosynchrotron \end{column} \begin{column}{0.7\textwidth} \centering \includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}% \end{column} \end{columns} \vfill \begin{columns} \begin{column}{0.2\textwidth} \centering Askaryan \end{column} \begin{column}{0.7\textwidth} \centering \includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}% \imagecite{Huege:2017bqv} \end{column} \end{columns} % \vfill \end{frame} \subsubsection{Radio Interferometry} \begin{frame}{Radio Interferometry: Concept} \begin{columns} \begin{column}{0.4\textwidth} \begin{figure} \includegraphics<1>[width=\textwidth]{radio_interferometry/rit_schematic_base.pdf}% \includegraphics<2>[width=\textwidth]{radio_interferometry/rit_schematic_far.pdf}% \includegraphics<3>[width=\textwidth]{radio_interferometry/rit_schematic_close.pdf}% \includegraphics<4>[width=\textwidth]{radio_interferometry/rit_schematic_true.pdf}% \end{figure} \end{column} \begin{column}{0.6\textwidth} \vspace*{\fill} \begin{itemize} \item<1-> Measure signal $S_i(t)$ at antenna $\vec{a_i}$ \item<2-> Calculate light travel time \\[5pt] \quad $\Delta_i(\vec{x}) = \frac{ \left| \vec{x} - \vec{a_i} \right| }{c} n_{eff}$ \item<2-> Sum waveforms accounting \\ for time delay \\[5pt] \quad $S(\vec{x}, t) = \sum S_i( t + \Delta_i(\vec{x}) )$ \end{itemize} \vspace*{\fill} \begin{figure}% Spatially \includegraphics<1>[width=0.8\textwidth]{radio_interferometry/single_trace.png}% \includegraphics<2>[width=0.8\textwidth]{radio_interferometry/trace_overlap_bad.png}% \includegraphics<3>[width=0.8\textwidth]{radio_interferometry/trace_overlap_medium.png}% \includegraphics<4>[width=0.8\textwidth]{radio_interferometry/trace_overlap_best.png}% \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Radio Interferometry: Image} \begin{figure} \centering \includegraphics[width=0.7\textwidth]{2006.10348/fig01.png}% \imagecite{Schoorlemmer:2020low} \end{figure} \end{frame} \begin{frame}{Radio Interferometry: Xmax Resolution vs Timing Resolution} \begin{figure} \centering \includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}% \imagecite{Schoorlemmer:2020low} \end{figure} \end{frame} %%%%%%%%% \subsection{Synchronisation: Single frequency beacon} \begin{frame}{Short period beacon synchronisation} \begin{figure} %\centering \hspace*{-5em} \includegraphics<1>[width=1.3\textwidth]{beacon/08_beacon_sync_timing_outline.pdf}% \includegraphics<2>[width=1.3\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf}% \includegraphics<3>[width=1.3\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf}% \end{figure} \end{frame} \begin{frame}{Time resolving short period beacon} \begin{figure} \centering \includegraphics<1>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf} \includegraphics<2>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf} \includegraphics<3>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf} \includegraphics<4>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf} \end{figure} \end{frame} \begin{frame}{Time resolving short period beacon: phase vs full} \begin{columns} \begin{column}{0.45\textwidth} { Phase reparation } \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}% \vfill \includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}% \end{column} \hfill \begin{column}{0.45\textwidth} { Phase + Period reparation } \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}% \vfill \includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}% \end{column} \end{columns} \end{frame} \subsection{Synchronisation: Expected Time Accuracies vs SNR} \begin{frame} \begin{figure} \includegraphics[width=\textwidth]{beacon/time_res_vs_snr.pdf} \end{figure} \end{frame} \begin{frame} \begin{figure} \includegraphics[width=\textwidth]{pulse/time_res_vs_snr_multiple_dt.pdf} \end{figure} \end{frame} %%%%%%%%%% \subsection{GNSS clock stability} \begin{frame}{GNSS clock stability I} \begin{columns} \begin{column}{0.4\textwidth} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{grand/setup/antenna-to-adc.pdf} \caption{ GRAND Digitizer Unit's ADC to antennae } \end{figure} \end{column} \hfill \begin{column}{0.5\textwidth} \begin{figure} \includegraphics[width=\textwidth]{grand/setup/channel-delay-setup.pdf}% \caption{ Channel filterchain delay experiment } \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{GNSS clock stability II} \begin{figure} \centering \includegraphics[width=0.7\textwidth]{grand/setup/grand-gps-setup.pdf} \caption{ GNSS stability experiment } \end{figure} \end{frame} \subsubsection{In the field} \begin{frame}{GNSS clock stability II} \begin{columns} \begin{column}{0.5\textwidth} \includegraphics[width=\textwidth]{images/IMG_20220819_154801.jpg} \end{column} \begin{column}{0.5\textwidth} \includegraphics[width=\textwidth]{images/IMG_20220815_161244.jpg} \end{column} \end{columns} \end{frame} \subsubsection{White Rabbit} \begin{frame}{White Rabbit: GNSS} \begin{figure} \includegraphics<1>[width=\textwidth]{gnss/phase-delocked-gps-white-rabbit-setup-colored.pdf} \includegraphics<2>[width=\textwidth]{gnss/phase-delocked-gps-white-rabbit-setup-colored.pdf} \end{figure} \end{frame} \begin{frame}{White Rabbit: Precision Time Protocol} \begin{figure} \includegraphics[height=\textheight]{white-rabbit/protocol/wrptpMSGs_1.pdf} \imagecite{WRPTP} \end{figure} \end{frame} \begin{frame}{White Rabbit: Delay model} \begin{figure} \includegraphics[width=\textwidth]{white-rabbit/protocol/delaymodel.pdf} \imagecite{WRPTP} \end{figure} \end{frame} \begin{frame}{White Rabbit: Clocks Reference} \begin{figure} \centering \hspace*{-5em} \includegraphics[width=1.35\textwidth]{clocks/wr-clocks.pdf} \end{figure} \end{frame} %%%%%%%%%%%%%% % Bibliography %%%%%%%%%%%%%% \section*{References} \begin{frame}[allowframebreaks] \frametitle{References} \printbibliography \end{frame} \end{document}