% vim: fdm=marker fmr=<<<,>>> %\documentclass[notes]{beamer} \documentclass[]{beamer} %%%%%%%%%%%%%%% % Preamble <<< %%%%%%%%%%%%%%% \usepackage[british]{babel} \usepackage{csquotes} \usepackage{amsmath} \usepackage{hyperref} \usepackage[backend=bibtex,style=numeric,maxnames=1]{biblatex} \usepackage{appendixnumberbeamer} \usepackage{graphicx} \usepackage{tikz} \usepackage{xurl} \usepackage{physics} \usepackage{cancel} \usepackage{multicol} \graphicspath{{.}{./figures/}{../../figures/}} \usepackage{todo} \addbibresource{../../bibliotheca/bibliography.bib} % Use arXiv identifier if available \DeclareCiteCommand{\arxivcite} {\usebibmacro{prenote}} {\usebibmacro{citeindex}% [\usebibmacro{cite}] \newunit \clearfield{eprintclass} \usebibmacro{eprint}} {\multicitedelim} {\usebibmacro{postnote}} \newcommand{\imagesource}[1]{~\\[0pt]\vspace*{-7pt}\hspace*{10pt}{\tiny#1}} \newcommand{\imagecredit}[1]{\imagesource{Credit:\thinspace#1}} %\newcommand{\imagecite}[1]{\imagesource{\arxivcite{#1}}} % Disable Captions \setbeamertemplate{caption}{\raggedright\small\insertcaption\par} % no to navigation, yes to frame numbering \beamertemplatenavigationsymbolsempty \setbeamerfont{page number in head/foot}{size=\normalsize} \setbeamertemplate{page number in head/foot}{\insertframenumber/\inserttotalframenumber} %\setbeamercolor{page number in head/foot}{fg=red} \setbeamerfont{section in head/foot}{size=\small} \setbeamercolor{section in head/foot}{fg=gray} \setbeamertemplate{section in head/foot}{\textit{\insertsectionhead}} %\setbeamertemplate{footline}[frame number] \setbeamertemplate{footline} {% \leavevmode% \hbox{% \begin{beamercolorbox}[wd=.7\paperwidth,ht=2.55ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{title in head/foot}% \usebeamertemplate*{section in head/foot}% \hfill% \end{beamercolorbox} \begin{beamercolorbox}[wd=.1\paperwidth,ht=2.55ex,dp=1ex,sep=0pt]{my empty section} \hfill% \end{beamercolorbox} \begin{beamercolorbox}[wd=.2\paperwidth,ht=2.55ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{page number in head/foot}% \hfill% \usebeamertemplate*{page number in head/foot}% \end{beamercolorbox}}% } %% From https://tex.stackexchange.com/a/55849 % Keys to support piece-wise uncovering of elements in TikZ pictures: % \node[visible on=<2->](foo){Foo} % \node[visible on=<{2,4}>](bar){Bar} % put braces around comma expressions % % Internally works by setting opacity=0 when invisible, which has the % adavantage (compared to \node<2->(foo){Foo} that the node is always there, hence % always consumes space plus that coordinate (foo) is always available. % % The actual command that implements the invisibility can be overriden % by altering the style invisible. For instance \tikzsset{invisible/.style={opacity=0.2}} % would dim the "invisible" parts. Alternatively, the color might be set to white, if the % output driver does not support transparencies (e.g., PS) % \tikzset{ invisible/.style={opacity=0}, visible on/.style={alt={#1{}{invisible}}}, alt/.code args={<#1>#2#3}{% \alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}} % \pgfkeysalso doesn't change the path }, } \hypersetup{pdfpagemode=UseNone} % don't show bookmarks on initial view % >>> Preamble %%%%%%%%%%%%%%% % Meta data <<< %%%%%%%%%%%%%%% \def\thesistitle{Enhancing Timing Accuracy\texorpdfstring{\\[0.3cm]}{ }in Air Shower Radio Detectors} \def\thesissubtitle{} \def\thesisauthorfirst{E.T.} \def\thesisauthorsecond{de Boone} \def\thesisauthoremailraw{ericteunis@deboone.nl} \def\thesisauthoremail{\href{mailto:\thesisauthoremailraw}{\thesisauthoremailraw}} \def\thesissupervisorfirst{dr. Harm} \def\thesissupervisorsecond{Schoorlemmer} \def\thesissupervisoremailraw{} \def\thesissupervisoremail{\href{mailto:\thesissupervisoremailraw}{\thesissupervisoremailraw}} \title[\thesistitle]{\thesistitle} \date{July, 2023} \author[\thesisauthorfirst\space\thesisauthorsecond]{% \texorpdfstring{\thesisauthorfirst\space\thesisauthorsecond\thanks{e-mail: \thesisauthoremail}\\ \vspace*{0.5em} {Supervisor: \thesissupervisorfirst\space\thesissupervisorsecond } }{\thesisauthorfirst\space\thesisauthorsecond<\thesisauthoremailraw>} } % >>> Meta data \newcommand{\tclock}{\ensuremath{t_\mathrm{clock}}} \newcommand{\tClock}{\tclock} \newcommand{\ns}{\ensuremath{\mathrm{ns}}} \newcommand{\pTrue}{\phi} \newcommand{\PTrue}{\Phi} \newcommand{\pMeas}{\varphi} \newcommand{\pTrueEmit}{\pTrue_0} \newcommand{\pTrueArriv}{\pTrueArriv'} \newcommand{\pMeasArriv}{\pMeas_0} \newcommand{\pProp}{\pTrue_d} \newcommand{\pClock}{\pTrue_c} \begin{document} { % Titlepage <<< \setbeamertemplate{background} {% \parbox[c][\paperheight][c]{\paperwidth}{% \centering% \vfill% \includegraphics[width=\textwidth]{beacon/array_setup_gps_transmitter_cows.png}% \vspace*{2em} }% } \setbeamertemplate{footline}{} % no page number here \frame{ \titlepage } } % >>> %%%%%%%%%%%%%%% % Start of slides <<< %%%%%%%%%%%%%%% \section{Cosmic Particles Detection}% <<<< % Sources, Types, Propagation, Observables % Flux -> Large instrumentation area % Detection methods of Auger % - FD, SD % AERA / AugerPrime RD or GRAND \begin{frame}{Ultra High Energy particles} \begin{figure} \centering \includegraphics[width=0.9\textwidth]{astroparticle/bk978-0-7503-2344-4ch1f2_hr.jpg}% \imagecredit{Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC} \end{figure} \end{frame} \begin{frame}{Ultra High Energy particle flux} \begin{columns} \begin{column}{0.6\textwidth} \begin{figure} \centering %\includegraphics[width=0.7\textwidth]{astroparticle/cr_flux_PDG_2023.pdf}% \includegraphics[width=\textwidth]{astroparticle/spectrum.png}% \imagecredit{\nocite{PDG2022}Particle Data Group} \end{figure} \end{column} \begin{column}{0.5\textwidth} Large Area Experiments:\\ %\begin{multicols}{2} \begin{itemize} \item Pierre Auger Observatory \item Giant Radio Array for Neutrino Detection \end{itemize} \vfill \begin{figure} \includegraphics[width=\textwidth]{images/A-schematic-of-the-Pierre-Auger-Observatory-where-each-black-dot-is-a-water-Cherenkov.png} \imagecredit{\href{https://www.researchgate.net/figure/A-schematic-of-the-Pierre-Auger-Observatory-where-each-black-dot-is-a-water-Cherenkov_fig1_319524774}{Hans O. Klages}} \end{figure} %\end{multicols} \end{column} \end{columns} \end{frame} \begin{frame}{Air Showers} % Observables % \begin{columns} % \begin{column}{0.45\textwidth} % \begin{figure} % \includegraphics[width=\textwidth]{airshower/shower_development_depth_iron_proton_photon_with_muons.pdf} % \imagecredit{H. Schoorlemmer} % \end{figure} % \end{column} % \hfill % \begin{column}{0.45\textwidth} % \end{column} % \end{columns} \begin{figure} \hspace*{-2em} \centering \includegraphics[width=1.13\textwidth]{airshower/Auger_ScreenShot_GoldenHybrid1_shower_SD_FD.png} \imagesource{From:~\url{https://opendata.auger.org/display.php?evid=172657447200}} \end{figure} \end{frame} \begin{frame}{Air Shower Radio Emission} \begin{columns} \begin{column}{0.45\textwidth} \begin{figure} \includegraphics[width=\textwidth]{airshower/shower_development_depth_iron_proton_photon.pdf} \imagecredit{H. Schoorlemmer} \end{figure} \end{column} \hfill \begin{column}{0.545\textwidth} \begin{figure} \centering Charge excess \includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}\\% \vspace*{2em} Geomagnetic \includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}% \imagesource{\arxivcite{Huege:2017bqv}} \end{figure} \end{column} \end{columns} \end{frame} % >>>> \section{Radio Interferometry}% <<<< \begin{frame}{Radio Interferometry: Concept} Interferometry: Amplitude + Timing information of the $\vec{E}$-field\\ \vspace*{ 0.8em } \begin{columns} \begin{column}{0.4\textwidth} \begin{figure} \includegraphics<1>[width=\textwidth]{radio_interferometry/rit_schematic_base.pdf}% \includegraphics<2>[width=\textwidth]{radio_interferometry/rit_schematic_far.pdf}% \includegraphics<3>[width=\textwidth]{radio_interferometry/rit_schematic_close.pdf}% \includegraphics<4>[width=\textwidth]{radio_interferometry/rit_schematic_true.pdf}% \end{figure} \end{column} \begin{column}{0.6\textwidth} \vspace*{\fill} \begin{itemize} \item<1-> Measure signal $S_i(t)$ at antenna $\vec{a_i}$ \item<2-> Calculate light travel time \\[5pt] \quad $\Delta_i(\vec{x}) = \frac{ \left| \vec{x} - \vec{a_i} \right| }{c} n_{eff}$ \item<2-> Sum waveforms accounting \\ for time delay \\[5pt] \quad $S(\vec{x}, t) = \sum S_i( t + \Delta_i(\vec{x}) )$ \end{itemize} \vspace*{\fill} \begin{figure}% Spatially \includegraphics<1>[width=0.8\textwidth]{radio_interferometry/single_trace.png}% \includegraphics<2>[width=0.8\textwidth]{radio_interferometry/trace_overlap_bad.png}% \includegraphics<3>[width=0.8\textwidth]{radio_interferometry/trace_overlap_medium.png}% \includegraphics<4>[width=0.8\textwidth]{radio_interferometry/trace_overlap_best.png}% \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Radio Interferometry: Image} \begin{figure} \centering \includegraphics[width=0.7\textwidth]{2006.10348/fig01.png}% \imagesource{\arxivcite{Schoorlemmer:2020low}} \end{figure} \end{frame} % >>>> \section{Timing in Air Shower Radio Detectors}% <<<< % GNSS % reference system: White Rabbit, AERA beacon, (ADS-B?) % GRAND setup and measurements \begin{frame}{Timing in Air Shower Radio Detectors} % Geometry Relative timing is important for Radio Interferometry. {\small ($ 1\ns\, @ c \sim 30\mathrm{cm}$)}\\ \vspace*{1em} Large inter-detector spacing ($\sim 1\mathrm{km}$)\\ $\mapsto$ Default timing mechanism: Global Navigation Satellite Systems\\ \vspace*{1em} What is the accuracy of such systems?\\ \visible<2>{ \quad @Auger: $\sigma_t \gtrsim 10\ns$ } \vfill \begin{columns} \begin{column}{0.45\textwidth} \begin{figure} \visible<2>{ \centering \includegraphics[width=\textwidth]{gnss/auger/1512.02216.figure3.gnss-time-differences.png} \vspace*{-1em} \imagesource{\arxivcite{PierreAuger:2015aqe}} } \end{figure} \end{column} \hfill \begin{column}{0.5\textwidth}%<<< \vfill \begin{figure} \begin{tikzpicture}[scale=1] \clip (2.5 , 0) rectangle ( 6, 2.5); \node[anchor=south west, inner sep=0] (image) at (0,0) {\includegraphics[width=\textwidth]{beacon/array_setup_gps_transmitter_cows.png}}; %\draw[help lines,xstep=1,ystep=1] (0,0) grid (11,5); \end{tikzpicture} \imagecredit{H. Schoorlemmer} \end{figure} \end{column}%>>> \end{columns} \end{frame} % Geometry % Pulse method + SNR % Sine method + SNR \begin{frame}[t]{Timing in Radio Detectors: Beacon Synchronisation} % Geometry Relative timing is important for Radio Interferometry.\\ \vspace*{1em} Default Timing mechanism: {\color<1>{red} Global Navigation Satellite Systems}\\ \visible<1->{ +Extra Timing mechanism: {\color<1>{blue} Beacon} (Pulse, Sine)%, {\color{green} ADS-B} } \vfill \begin{figure} \hspace*{-2em} \begin{tikzpicture} \node[anchor=south west, inner sep=0] (image) at (0,0) {\includegraphics[width=0.8\textwidth]{beacon/array_setup_gps_transmitter_cows.png}}; \begin{scope}[x={(image.south east)}, y={(image.north west)}] %\draw[help lines,xstep=.1,ystep=.1] (0,0) grid (1,1); %\foreach \x in {0,1,...,9} { \node [anchor=north] at (\x/10,0) {0.\x}; } %\foreach \y in {0,1,...,9} { \node [anchor=east] at (0,\y/10) {0.\y}; } \node (transmitter) at (0.23, 0.32) {}; \node (gnss) at (0.85, 0.87) {}; %% Aeroplane %\node[ visible on=<{2-}>] (aeroplane) at (0.5, 0.67) {\scalebox{-1}[1]{\includegraphics[width=1.5cm]{templates/aeroplane.png}}}; %\draw[green, ultra thick, visible on=<{2-}>] (aeroplane.center) circle[radius=8mm]; %% Circles \draw[red, ultra thick, visible on=<{1-}>] (gnss.center) circle[radius=8mm]; \draw[blue, ultra thick, visible on=<{1-}>] (transmitter.center) circle[radius=8mm]; %% Mask Transmitter \fill[white, visible on=<0>] (0,0) rectangle (0.45,1) ; \end{scope} \end{tikzpicture} \imagecredit{H. Schoorlemmer} \end{figure} \end{frame} \section{Beacon Synchronisation} \begin{frame}[t]{Beacon Synchronisation: Geometry} Local antenna time $t'_i$ due to time~delay~$t_{\mathrm{d}i}$, clock~skew~$\sigma_i$\\ and transmitter~time~$t_\mathrm{tx}$ \begin{equation*} t'_i = t_{tx} + t_{\mathrm{d}i} + \sigma_i \end{equation*} \vfill \begin{figure} \begin{tikzpicture} [inner sep=2mm, place/.style={circle,draw=black!50,fill=white,thick} ] \clip (0 , 0) rectangle (9, 2.5); \node[anchor=south west, inner sep=0] (image) at (0,0) {\includegraphics[width=0.8\textwidth]{beacon/array_setup_gps_transmitter_cows.png}}; \begin{scope}[x={(image.south east)}, y={(image.north west)}] %\draw[help lines,xstep=.1,ystep=.1] (0,0) grid (1,1); %\foreach \x in {0,1,...,9} { \node [anchor=north] at (\x/10,0) {0.\x}; } %\foreach \y in {0,1,...,9} { \node [anchor=east] at (0,\y/10) {0.\y}; } %\fill[white] (0.4,0) rectangle (0.6,0.4); \node (transmitter) at (0.23, 0.32) {}; \node (ant1) at (0.51, 0.32) [place] {1}; %\node (ant1) at (0.72, 0.25) [place] {1}; \node (ant2) at (0.65, 0.50) [place] {2}; % \draw (transmitter.center) to node [below] {$t_{\mathrm{d}1}$} (ant1) ; \draw (transmitter.center) to node [above] {$t_{\mathrm{d}2}$} (ant2) ; \end{scope} \end{tikzpicture} \imagecredit{H. Schoorlemmer} \end{figure} \vfill Measured time difference:\\ \vspace{-0.5em} \begin{equation*} \Delta t'_{12} = t'_1 - t'_2 = \Delta t_{\mathrm{d}12} + \sigma_{12} + (t_\mathrm{tx} - t_\mathrm{tx}) \end{equation*} \end{frame} \subsection{Pulse Beacon} \begin{frame}{Pulse Beacon} \begin{figure} \includegraphics[width=\textwidth]{pulse/antenna_signals_tdt0.2_zoom.pdf} \end{figure} \vfill \end{frame} \begin{frame}{Pulse Beacon} Correlation: similarity between two signals.\\ \begin{figure} \includegraphics[width=\textwidth]{pulse/correlation_tdt0.2_zoom.pdf} \end{figure} \end{frame} \begin{frame}{Pulse Beacon Timing} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{pulse/time_res_vs_snr_multiple_dt.pdf} \end{figure} \end{frame} \subsection{Sine Beacon} \begin{frame}{(Multi)Sine Beacon} Phase measurement $\varphi'_i$ using Fourier Transform, $k$~unknown: \begin{equation*} t'_i = \left[ \frac{\varphi'_i}{2\pi} \; + \; k \right] T \end{equation*} \begin{figure} \includegraphics[width=.45\textwidth]{methods/fourier/waveform.pdf} \hfill \includegraphics<1>[width=.45\textwidth]{methods/fourier/noisy_spectrum.pdf} \end{figure} \end{frame} \begin{frame}{(Multi)Sine Beacon Timing} \vspace*{1em} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{beacon/time_res_vs_snr_large.pdf} \end{figure} \vspace*{-1em} \begin{columns} \begin{column}[b]{0.4\textwidth} \centering \tiny Random~Phasor~Sum: \autocite{goodman1985:2.9}~ ``Statistical~Optics'', J.~Goodman \end{column} \begin{column}[b]{0.7\textwidth} \tiny\begin{equation*} p_\PTrue(\pTrue; s, \sigma) = \frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi } + \sqrt{\frac{1}{2\pi}} \frac{s}{\sigma} e^{-\left( \frac{s^2}{2\sigma^2}\sin^2{\pTrue} \right)} \frac{\left( 1 + \erf{ \frac{s \cos{\pTrue}}{\sqrt{2} \sigma }} \right)}{2} \cos{\pTrue} \end{equation*} \end{column} \end{columns} \end{frame} \begin{frame}{Beacon Synchronisation: Conclusion} \vspace*{2em} \begin{columns}[T] \begin{column}{0.49\textwidth} \begin{center}\bfseries Pulse \end{center} \vspace*{-1em} \begin{itemize} \item discrete \item requires template \end{itemize} \end{column} \hfill \begin{column}{0.49\textwidth} \begin{center}\bfseries Sine \end{center} \vspace*{-1em} \begin{itemize} \item continuous \item longer trace\\ $\mapsto$ better SNR \item $k$ period unknown \end{itemize} \end{column} \end{columns} \vfill \begin{columns} \begin{column}{0.49\textwidth} \includegraphics[width=1\textwidth]{pulse/time_res_vs_snr_multiple_dt_small.pdf} \end{column} \hfill \begin{column}{0.49\textwidth} \includegraphics[width=1\textwidth]{beacon/time_res_vs_snr_small.pdf} \end{column} \end{columns} \end{frame} % >>>> \section{Single Sine Synchronisation}% <<<< % Sine method + Radio Interferometry \begin{frame}{Single Sine Synchronisation} $k$ is discrete, lift the period degeneracy using the air~shower radiosignal \begin{equation*} t'_i = (\frac{\varphi'_i}{2\pi} + n_i)T = A_i + B_i \end{equation*} \vspace*{-2em} \begin{figure} %\centering \hspace*{-5em} \includegraphics<1>[width=1.3\textwidth]{beacon/08_beacon_sync_timing_outline.pdf}% \includegraphics<2>[width=1.3\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf}% \includegraphics<3>[width=1.3\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf}% \end{figure} \begin{align*} \Delta t'_{ij} &= (A_j + B_j) - (A_i + B_i) + \Delta t'_\varphi \\ &= \Delta A_{ij} + \only<1>{\Delta t'_\varphi}\only<2->{\cancel{\Delta t'_\varphi}} + k_{ij}T\\ \end{align*} \end{frame} \begin{frame}{Single Sine Synchronisation Simulation} Air Shower simulation on a grid of 100x100 antennas. \\ \begin{columns} \begin{column}{0.45\textwidth} \begin{itemize} \item<2-> Add beacon ($T\sim20\ns$) to antenna \item<2-> Randomise clocks ($\sigma=30\ns$) \item<3-> Measure phase with DTFT \item<3-> Repair clocks for small offsets \item<3-> Iteratively find best $k_{ij}$ \end{itemize} \end{column} \hfill \begin{column}{0.5\textwidth} \begin{figure} \hspace*{-2em} \includegraphics<1>[width=1.2\textwidth]{ZH_simulation/array_geometry_shower_amplitude.png} \includegraphics<2>[width=1.2\textwidth]{ZH_simulation/ba_measure_beacon_phase.py.A74.no_mask.pdf}% \includegraphics<3>[width=1.2\textwidth]{ZH_simulation/ba_measure_beacon_phase.py.A74.masked.pdf}% \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Single Sine Synchronisation: Iterative $k_{0i}$-finding} \small{ ``Interferometry'' while allowing to shift by $T = 1/f_\mathrm{beacon}$ \\[5pt] Iterative process optimizing signal power: \\ \; Scan positions finding the best $\{k_{0i}\}$ set,\\ \; then evaluate on a grid near shower axis and zoom in. } \only<1-3>{\begin{figure} \includegraphics<1>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.run0.i1.zoomed.beacon.pdf} \includegraphics<2>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run0.pdf} \includegraphics<3>[width=0.8\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run0.power.pdf} \end{figure}} \only<4>{\begin{figure} \includegraphics[width=0.4\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run1.pdf} \hfill \includegraphics[width=0.4\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run1.power.pdf} \vspace{0.5cm} \includegraphics[width=0.4\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run2.pdf} \hfill \includegraphics[width=0.4\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run2.power.pdf} \end{figure}} \end{frame} \begin{frame}{Single Sine Synchronisation: Timing Reparation} \begin{columns} \begin{column}{0.45\textwidth} { Phase reparation } \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}% \vfill \includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}% \label{fig:sine:repairments} \end{column} \hfill \begin{column}{0.45\textwidth} { Phase + Period reparation } \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}% \vfill \includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_full.scale4d.pdf}% \end{column} \end{columns} \end{frame} \begin{frame}{Single Sine Synchronisation: Comparison} \begin{columns} \begin{column}{0.45\textwidth} { True clock } \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.no_offset.axis.trace_overlap.no_offset.pdf}% \vfill \includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf}% \end{column} \hfill \begin{column}{0.45\textwidth} { Phase + Period reparation } \includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}% \vfill \includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_full.scale4d.pdf}% \end{column} \end{columns} \end{frame} % >>>> \section{Conclusion}% <<<< % Single Sine + Air Shower % Outlook: Parasitic/Active vs Pulse/Sine table % Parasitic Single Sine: 67MHz Auger % Implementation for GRAND? \begin{frame}{Conclusion and Outlook} \begin{itemize} \item Cosmic Particles induce Extensive Air Showers\\[10pt] \item Relative Timing is crucial to Radio Interferometry\\[10pt] \item Pulse and Sine beacons can synchronise effectively\\[10pt] \item Single Sine + Air Shower works \end{itemize} \vspace*{2em} \visible<2>{ Outlook: \begin{itemize} \item Parasitic setups, i.e.~the $67\mathrm{MHz}$ in Auger,\\[10pt] \item Self-calibration using pulsed beacon \end{itemize} } \vfill \end{frame} % >>>> % >>> End of Slides %%%%%%%%%%%%%%% % Backup slides <<< %%%%%%%%%%%%%%% \appendix \begin{frame}[c] \centering \Large { \textcolor{blue} { Supplemental material } } \end{frame} \section*{Table of Contents} \begin{frame}{Table of Contents} \tableofcontents \end{frame} \begin{frame}{Single Sine Timing Result} \centering \includegraphics<1>[width=\textwidth]{ZH_simulation/cb_report_measured_antenna_time_offsets.py.time-amplitudes.comparison.pdf} \includegraphics<2>[width=\textwidth]{ZH_simulation/cb_report_measured_antenna_time_offsets.py.time-amplitudes.residuals.pdf} \end{frame} \section{Airshower} \begin{frame}{Airshower development} \begin{figure} \includegraphics[width=\textwidth]{1607.08781/fig02a_airshower+detectors.png} \imagesource{\arxivcite{Schroder:2016hrv}} \end{figure} \end{frame} \begin{frame}{Radio footprint; GRAND} \begin{figure} \includegraphics[width=0.9\textwidth]{grand/GRAND-detection-principle-1.png} \imagecredit{\arxivcite{GRAND:2018iaj}} \end{figure} \end{frame} \section{Radio Interferometry} \begin{frame}{Radio Interferometry: Xmax Resolution vs Timing Resolution} \begin{figure} \centering \includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}% \imagecredit{\arxivcite{Schoorlemmer:2020low}} \end{figure} \end{frame} \section{Beacon contamination} \begin{frame}{Sine: Air Shower - Beacon} \centering \includegraphics[width=\textwidth]{ZH_simulation/da_reconstruction.py.traces.A74.zoomed.peak.Ex.pdf} \end{frame} \section{Beacon Pulse} \begin{frame}{Filter Response and Sampling} \centering \includegraphics[width=\textwidth]{pulse/interpolation_deltapeak+antenna.pdf} \end{frame} %\begin{frame}{Hilbert Timing} % \centering % \includegraphics[width=\textwidth]{pulse/hilbert_timing_zoom.pdf} %\end{frame} \section{Beacon without TX} \subsection{Pulse} \begin{frame}{Beacon: Pulse (single baseline)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_single_center_time.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_single_left_time.pdf} \end{figure} \end{frame} \begin{frame}{Beacon: Pulse (3 baselines)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_three_center_time.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_three_left_time.pdf} \end{figure} \end{frame} \begin{frame}{Beacon: Pulse (multi baseline)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_square_ref0_time.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_square_all_time.pdf} \end{figure} \end{frame} \subsection{Sine} \begin{frame}{Beacon: Sine (single baseline)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_single_center_phase.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_single_left_phase.pdf} \end{figure} \end{frame} \begin{frame}{Beacon: Sine (3 baseline)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_three_center_phase.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_three_left_phase.pdf} \end{figure} \end{frame} \begin{frame}{Beacon: Sine (multi baseline reference antenna)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_square_ref0_phase.pdf} %\includegraphics<2>[width=\textwidth]{beacon/field/field_square_ref0_phase_zoomtx.pdf} \end{figure} \end{frame} \begin{frame}{Beacon: Sine (all baselines)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_square_all_phase.pdf} %\includegraphics<2>[width=\textwidth]{beacon/field/field_square_all_phase_zoomtx.pdf} \end{figure} \end{frame} \section{Fourier} \begin{frame}{DTFT vs DFT} \centering \includegraphics[width=\textwidth]{methods/fourier/noisy_spectrum.pdf} \end{frame} \begin{frame}{(Discrete) Fourier and Phase} \begin{equation*} \hspace{-2em} u(t) = \exp(i2\pi ft + \phi_t) \xrightarrow{\mathrm{Fourier\; Transform}} f', \phi_f \end{equation*} \includegraphics[width=\textwidth]{fourier/02-fourier_phase-f_max_showcase.pdf} \end{frame} \begin{frame}{Phase reconstruction?} \begin{figure} \makebox[\textwidth][c]{\includegraphics[width=1.4\textwidth]{fourier/02-fourier_phase-phi_f_vs_phi_t.pdf}}% \end{figure} \begin{block}{} Phase reconstruction is easy if sample rate ``correct'' \end{block} \end{frame} %%%%%%%%%%%%% \begin{frame}{Phase reconstruction?} \begin{block}{} What if sample rate ``incorrect''? \\ \end{block} \begin{block}<2->{} $\rightarrow$ Linear interpolation ({\small $f_\mathrm{signal}$, $f_\mathrm{max}$, $f_\mathrm{submax}$, $\phi_\mathrm{max}$ and $\phi_\mathrm{submax}$}) \end{block} \vspace{2em} \begin{figure} \makebox[\textwidth][c]{ \includegraphics<1-2>[width=1.4\textwidth]{fourier/02-fourier_phase-phi_f_vs_f_max_increasing_N_samples.pdf} \includegraphics<3>[width=1.3\textwidth]{fourier/02-fourier_phase-phase_reconstruction-unfolded.pdf} \includegraphics<4>[width=1.3\textwidth]{fourier/02-fourier_phase-phase_reconstruction-unfolded-zoomed.pdf} }% \end{figure} \end{frame} %%%%%%%%%% \section{GNSS clock stability} \begin{frame}{GNSS clock stability I} \begin{columns} \begin{column}{0.4\textwidth} \begin{figure} \centering \includegraphics[width=0.8\textwidth]{grand/setup/antenna-to-adc.pdf} \caption{ GRAND Digitizer Unit's ADC to antennae } \end{figure} \end{column} \hfill \begin{column}{0.5\textwidth} \begin{figure} \includegraphics[width=\textwidth]{grand/setup/channel-delay-setup.pdf}% \caption{ Channel filterchain delay experiment } \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{GNSS filterchain delay experiment} \begin{columns} \begin{column}{0.5\textwidth} \centering Pulse \includegraphics[width=\textwidth]{grand/split-cable/split-cable-delays-ch1ch4.pdf} \end{column} \begin{column}{0.5\textwidth} \centering 50MHz Sinewave delay(ch1, ch2) = $46\mathrm{ps} \pm 10$ \includegraphics[width=\textwidth]{grand/split-cable/split-cable-delay-ch1ch2-50mhz-200mVpp.pdf} %\includegraphics[width=\textwidth]{fourier/04_signal_to_noise_fig04.png} \end{column} \end{columns} \end{frame} \begin{frame}{GNSS clock stability II} \begin{figure} \centering \includegraphics[width=0.7\textwidth]{grand/setup/grand-gps-setup.pdf} \caption{ GNSS stability experiment } \end{figure} \end{frame} \subsection{In the field} \begin{frame}{} \centering \includegraphics[width=0.5\textwidth]{images/IMG_20220712_164912_grand_DU.jpg}% \includegraphics[width=0.5\textwidth]{images/IMG_20220712_164904_checking_gnss.jpg}% \vfill \includegraphics[width=0.5\textwidth]{images/IMG_20220819_152900.jpg}% Outside box Inside Cabling \includegraphics[width=0.5\textwidth]{images/flir_20220812T114019.jpg}% Heat Inside \end{frame} \begin{frame}{GNSS clock stability III} \begin{columns} \begin{column}{0.5\textwidth} \includegraphics[width=\textwidth]{images/IMG_20220819_154801.jpg}% Closed box outside \end{column} \begin{column}{0.5\textwidth} \includegraphics[width=\textwidth]{images/IMG_20220815_161244.jpg}% Open box outside \end{column} \end{columns} \end{frame} \section{White Rabbit}%<<< \begin{frame}{Precision Time Protocol} \begin{itemize} \item Time synchronisation over (long) distance between (multiple) nodes \end{itemize} \begin{figure} \includegraphics[width=0.4\textwidth]{white-rabbit/protocol/ptpMSGs-color.pdf} \caption{ \cite{WRPTP} Precision Time Protocol messages. } \end{figure} \end{frame} \begin{frame}{White Rabbit} \begin{columns} \begin{column}{.5\textwidth} White Rabbit: \begin{itemize} \item SyncE (common oscillator) \item PTP (synchronisation) \end{itemize} \vspace{2em} Factors: \begin{itemize} \item device ($\Delta_{txm}$, $\Delta_{rxs}$, ...) \item link ($\delta_{ms}$, ...) \end{itemize} \begin{figure} \makebox[\textwidth][c]{\includegraphics[width=1.1\textwidth]{white-rabbit/protocol/delaymodel.pdf}} \imagecredit{\autocite{WRPTP}} \end{figure} \end{column} \begin{column}{.5\textwidth} \begin{figure} \makebox[\textwidth][c]{\includegraphics[width=1.1\textwidth]{white-rabbit/protocol/wrptpMSGs_1.pdf}} \imagecredit{\autocite{WRPTP}} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{White Rabbit Clock Reference} \begin{figure} \centering \hspace*{-5em} \includegraphics[width=1.35\textwidth]{clocks/wr-clocks.pdf} \end{figure} \end{frame}%>>> % >>> End of Backup Slides %%%%%%%%%%%%%% % Bibliography <<< %%%%%%%%%%%%%% \section*{References} \begin{frame}[allowframebreaks] \frametitle{References} \printbibliography \end{frame} % >>> Bibliography \end{document}