\documentclass[showdate=false]{beamer} \usepackage[british]{babel} \usepackage{amsmath} \usepackage{hyperref} \usepackage[backend=bibtex,style=trad-plain]{biblatex} \usepackage{graphicx} \graphicspath{{.}{../../figures/}} \usepackage{todo} \addbibresource{../../../bibliotheca/bibliography.bib} % Disable Captions \setbeamertemplate{caption}{\raggedright\small\insertcaption\par} % Show Section overview at beginning of section %\AtBeginSection[] %{ % \begin{frame}{Table of Contents} % \tableofcontents[currentsection, currentsubsection, sectionstyle=show/shaded, subsectionstyle=hide] % \end{frame} %} % no to navigation, yes to frame numbering \beamertemplatenavigationsymbolsempty \setbeamerfont{page number in head/foot}{size=\normalsize} \setbeamertemplate{footline}[frame number] \title[Beacon Timing]{Enhancing Timing Accuracy using Beacons} \date{Oct 06, 2022} \author{E.T. de Boone} \begin{document} \frame{\titlepage} \begin{frame}{Enhancing time accuracy} \begin{block}{} Goal: $\sigma_t < 1\mathrm{ns}$ (enabling Radio Interferometry) \end{block} \begin{block}{Strategy} \begin{itemize} \item Simulating beacons \item Characterising GNSS (GRAND) \end{itemize} \end{block} \begin{block}{Current Timing Methods} \begin{itemize} \item GNSS (online) (GPS: $\sigma_t \leq 30 \mathrm{ns}$ $@95\%$ of the time) \item Beacon (online/offline) \end{itemize} \end{block} \end{frame} % Antenna Setup \section{Beacon} \begin{frame}{Antenna Setup} \begin{block}{} Local time $i$ due to time delay $t_{\mathrm{d}i}$ and clock skew $\sigma_i$\\ \end{block} \begin{figure} \includegraphics<1>[width=0.8\textwidth]{beacon/antenna_setup_two.pdf} \includegraphics<2>[width=0.8\textwidth]{beacon/antenna_setup_three.pdf} \includegraphics<3->[width=0.8\textwidth]{beacon/antenna_setup_four.pdf} \vspace{-2cm} \end{figure} \begin{equation*} \Delta t'_{12} = t'_1 - t'_2 = \Delta t_{\mathrm{d}12} + \sigma_{12} \end{equation*} \onslide<2->\begin{equation*} \sigma_{12} + \sigma_{23} + \sigma_{31} = 0 \end{equation*} \end{frame} \begin{frame}{Beacon properties} %\Todo{Pulse vs Sine and why choose one over the other} %Pulse: % online only % direct measurement of \sigma_i %Sine: % online and offline % measurement of phase % removable if f appropriate %\begin{table} % \centering % \begin{tabular}{r|l|l} % & Pulse & Sine \\ % \hline \\ % on/offline & online & online + offline \\ % measurement & $t'_i (= t_i + \sigma_i)$ & $\varphi'_i (= 2\pi (\frac{t'_i}{T}\mod 1))$ \\ % resolving & requires high sampling rate & tracelength dependent \\ % removable from trace & unsure & if $f$ appropriate \\ % \end{tabular} %\end{table} \begin{columns}[t] \begin{column}{.45\textwidth} \begin{block}{Pulse} \begin{itemize} \item online \item $t'_i$ {\small $(= t_i + \sigma_i)$} \item resolving requires high sampling rate \end{itemize} \end{block} \end{column} \hfill \begin{column}{.45\textwidth} \begin{block}{Sine} \begin{itemize} \item online + offline \item $\varphi'_i$ {\small $(= 2\pi (ft'_i\mod 1))$} \item resolving is tracelength dependent \item removable from physics if $f$ appropriate \end{itemize} \end{block} \end{column} \end{columns} \end{frame} \subsection{Pulse} \begin{frame}{Beacon: Pulse (single baseline)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_single_center_time.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_single_left_time.pdf} \end{figure} \end{frame} \begin{frame}{Beacon: Pulse (3 baselines)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_three_center_time.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_three_left_time.pdf} \end{figure} \end{frame} \begin{frame}{Beacon: Pulse (multi baseline)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_square_ref0_time.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_square_all_time.pdf} \end{figure} \end{frame} \subsection{Sine} \begin{frame}{Beacon: Sine (single baseline)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_single_center_phase.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_single_left_phase.pdf} \end{figure} \end{frame} \begin{frame}{Beacon: Sine (3 baseline)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_three_center_phase.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_three_left_phase.pdf} \end{figure} \end{frame} \begin{frame}{Beacon: Sine (multi baseline reference antenna)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_square_ref0_phase.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_square_ref0_phase_zoomtx.pdf} \end{figure} \end{frame} \begin{frame}{Beacon: Sine (all baselines)} \begin{figure} \includegraphics<1>[width=\textwidth]{beacon/field/field_square_all_phase.pdf} \includegraphics<2>[width=\textwidth]{beacon/field/field_square_all_phase_zoomtx.pdf} \end{figure} \end{frame} \subsection{Solving Sine Beacon} \begin{frame}{Beacon: Sine: Two traces} \begin{equation*} t'_i = (\frac{\varphi'_i}{2\pi} + n_i)T = A_i + B_i \end{equation*} \begin{figure} \includegraphics[width=1\textwidth]{beacon/08_beacon_sync_timing_outline.pdf} \end{figure} \begin{align*} \Delta t_{ij} &= (A_j + B_j) - (A_i + B_i) + \Delta t_\varphi \\ &= \Delta A_{ij} + \Delta t_\varphi + k_{ij}T\\ \end{align*} \end{frame} \begin{frame}{Beacon: Sine: Two traces: Discrete solutions} \begin{figure} \includegraphics<1>[width=1\textwidth]{beacon/08_beacon_sync_timing_outline.pdf} \includegraphics<2>[width=1\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf} \end{figure} \begin{figure} \includegraphics[width=1\textwidth]{beacon/08_beacon_sync_coherent_sum.pdf} \end{figure} \end{frame} \begin{frame}{Work in Progress} \begin{block}{Repeat analysis on simulated airshower (without noise)} \begin{enumerate} \item Add beacon to each antenna \item Assign clock offsets \end{enumerate} then determine the relative offsets between the antennas \end{block} \end{frame} \end{document}