#!/usr/bin/env python3 """Generate some figures showing the alignment of clocks in a White Rabbit system with GrandMaster setup. """ import matplotlib.pyplot as plt import numpy as np import scipy.signal as sig rng = np.random.default_rng(12345) ### Functions def pps(t, t_start, width=0.5): """ Generate a PPS with width $width$ and starting at $t_start. """ return (t > t_start) & (t < t_start + width) def detect_rising_edges(threshold, data): """ Detect rising edges in data. https://stackoverflow.com/a/50365462 """ return np.flatnonzero((data[:-1] < threshold) & (data[1:] > threshold))+1 def first_shared_edge(x1, x2, threshold=0.3): try: length = len(x2) except TypeError: length = 1 x1_edges = detect_rising_edges(threshold, x1) if length > 1: x2_edges = detect_rising_edges(threshold, x2) else: x2_edges = x2 start_edge = x1_edges[x1_edges > x2_edges][0] return start_edge def aligned_pps(t, clock_in, pps_in, width=None): t_start = t[first_shared_edge(clock_in, pps_in)] if width is not None: return pps(t, t_start, width) else: return pps(t, t_start) ## Main def main(time_base = 10e-9): """ Generate a figure showing the required GrandMaster inputs with an aligned PPS out and DIO clock, and a random input event and its timestamp. """ clock_freq = 10e6 # Hz dio_freq = 12.5*clock_freq # Hz pps_in_early = -1.7/clock_freq #s pps_in_width = 1e2/clock_freq #s pps_out_width = 1e2/clock_freq #s t = np.linspace(-2.25*1/clock_freq, 0.8*1/clock_freq, 5000) # random_event_idx = rng.integers(len(t)*2/3, len(t)) # Somewhere within the time space random_event = t[random_event_idx] ## Create Grandmaster input signals clock_in = (sig.square(2*np.pi*clock_freq*t)+1)/2 pps_in = pps(t, pps_in_early, pps_in_width) ## Determine output signal clock_alignment = t[first_shared_edge(clock_in, pps_in)] pps_out = aligned_pps(t, clock_in, pps_in, width=pps_out_width) dio = (sig.square(2*np.pi*dio_freq*(t - clock_alignment))+1)/2 ## Random event timestamp timestamped_event = t[first_shared_edge(dio, random_event_idx)] # Create the figure fig, axs = plt.subplots(4,1, sharex=True, gridspec_kw={'hspace': 0}, figsize=(16,4)) ## Plot signals i=0 axs[i].set_ylabel("$\mathrm{PPS}_\mathrm{in}$", rotation='horizontal', ha='right', va='center') axs[i].plot(t, pps_in, 'purple', label="PPS in") i+=1 axs[i].set_ylabel("GM Clock\n($10\,\mathrm{MHz}$)", rotation='horizontal', ha='right', va='center') axs[i].plot(t, clock_in, label='10MHz in') i+=1 axs[i].set_ylabel("FMC DIO\n($125\,MHz$)", rotation='horizontal', ha='right', va='center') axs[i].plot(t, dio, 'y', label='DIO') axs[i].plot(random_event, 0.5, 'r*') axs[i].axvline(timestamped_event, color='b') i+=1 axs[i].set_ylabel("$\mathrm{PPS}_\mathrm{out}$", rotation='horizontal', ha='right', va='center') axs[i].plot(t, pps_out, 'g', label="PPS out") ## Styling for ax in axs: ax.axvline(clock_alignment, color='r', linestyle='--') ax.set_ylim(-0.2, 1.2) ax.set_yticks([]) ax.set_yticklabels([]) ax.grid() if time_base == 10e-9: axs[-1].set_xlabel("Time (ns)") ticks = axs[-1].get_xticks()*10/time_base # 10 was experimentally determined axs[-1].set_xticklabels(np.floor(ticks)) else: axs[-1].set_xlabel("Time (s)") return fig, (clock_alignment, random_event, timestamped_event) if __name__ == "__main__": from argparse import ArgumentParser import os.path as path parser = ArgumentParser(description=__doc__) parser.add_argument("fname", metavar="path/to/figure[/]", nargs="?", help="Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown.") args = parser.parse_args() if args.fname is not None and path.isdir(args.fname): args.fname = path.join(args.fname, path.splitext(path.basename(__file__))[0] + ".pdf") ### fig, _ = main() if args.fname is not None: plt.savefig(args.fname) else: plt.show()