\documentclass[showdate=false]{beamer} \usepackage[british]{babel} \usepackage{amsmath} \usepackage{hyperref} \usepackage[backend=bibtex,style=trad-plain]{biblatex} \usepackage{graphicx} \graphicspath{{.}{../../figures/}} \usepackage{todo} \usepackage{physics} \usepackage{cancel} \addbibresource{../../../bibliotheca/bibliography.bib} % Disable Captions \setbeamertemplate{caption}{\raggedright\small\insertcaption\par} % Show Section overview at beginning of section %\AtBeginSection[] %{ % \begin{frame}{Table of Contents} % \tableofcontents[currentsection, currentsubsection, sectionstyle=show/shaded, subsectionstyle=hide] % \end{frame} %} % no to navigation, yes to frame numbering \beamertemplatenavigationsymbolsempty \setbeamerfont{page number in head/foot}{size=\normalsize} \setbeamertemplate{footline}[frame number] \title[Beacon Timing]{Enhancing Timing Accuracy using Beacons} \date{Apr 13, 2023} \author{E.T. de Boone} \newcommand{\pTrue}{\phi} \newcommand{\PTrue}{\Phi} \newcommand{\pMeas}{\varphi} \newcommand{\pTrueEmit}{\pTrue_0} \newcommand{\pTrueArriv}{\pTrueArriv'} \newcommand{\pMeasArriv}{\pMeas_0} \newcommand{\pProp}{\pTrue_d} \newcommand{\pClock}{\pTrue_c} \begin{document} \frame{\titlepage} \begin{frame}{Enhancing time accuracy} \begin{block}{} Goal: $\sigma_{ij} < 1\mathrm{ns}$ (enabling Radio Interferometry) \end{block} \begin{block}{Strategy} \begin{itemize} \item Simulating beacons (both pulse and sine) \item Characterising GNSS (GRAND) \end{itemize} \end{block} \end{frame} % Antenna Setup \section{Beacon} \begin{frame}{Antenna Setup} \vskip -2em Local antenna time $t'_i$ due to time delay $t_{\mathrm{d}i}$ and clock skew $\sigma_i$ \\ \begin{figure} \includegraphics[width=0.4\textwidth]{beacon/antenna_setup_two.pdf} \end{figure} \vskip -2em \begin{equation*} \Delta t'_{12} = t'_1 - t'_2 = \Delta t_{\mathrm{d}12} + \sigma_{12} + (t_{tx} - t_{tx}) \end{equation*} \end{frame} \begin{frame}{Beacon: Sine: Two traces} Required signal: sine (beacon) + single pulse \begin{equation*} t'_i = (\frac{\varphi'_i}{2\pi} + n_i)T = A_i + B_i \end{equation*} \begin{figure} \includegraphics<1>[width=1\textwidth]{beacon/08_beacon_sync_timing_outline.pdf} \includegraphics<2>[width=1\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf} \end{figure} \begin{align*} \Delta t'_{ij} &= (A_j + B_j) - (A_i + B_i) + \Delta t'_\varphi \\ &= \Delta A_{ij} + \only<1>{\Delta t'_\varphi}\only<2->{\cancel{\Delta t'_\varphi}} + k_{ij}T\\ \end{align*} \end{frame} \begin{frame}{Beacon: Sine: Two traces: Discrete solutions} \begin{figure} \includegraphics<1>[width=1\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf} \includegraphics<2->[width=1\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf} \end{figure} \begin{figure} \includegraphics<-2>[width=1\textwidth]{beacon/08_beacon_sync_coherent_sum.pdf} \end{figure} \only<3>{\begin{equation*}\Delta t'_{ij} = \Delta A_{ij} + \cancel{\Delta t'_\varphi} + \cancel{k_{ij}T} \end{equation*}} \end{frame} \section{Simulations} \begin{frame}{Simulation} \begin{block}{} Apply previous steps to an airshower simulation (which provides the pulse): \begin{itemize} \item Add (sine) beacon to each antenna \item Shift clocks \item Measure phase \item Repair clocks for small offset $\Delta A_{ij}$ \item Iteratively find best $k_{ij}$ \end{itemize} \end{block} \end{frame} \begin{frame}{Simulation: Antenna Setup} \begin{figure} \includegraphics[width=0.5\textwidth]{path_leading_to_array_setup_with_inset_tx_array} \end{figure} \end{frame} \begin{frame}{Simulation: Local Phase} \begin{block}{} @Antenna $i$: measure phase $\varphi_i$ using DTFT, get $\varphi(\sigma_i) = \varphi_i - \varphi(t_0) - \varphi(t_{\mathrm{d}i})$ \end{block} \begin{figure} \includegraphics<1>[width=1\textwidth]{ba_measure_beacon_phase.py.A63.pdf} \includegraphics<2>[width=1\textwidth]{ba_measure_beacon_phase.py.A63.zoomed.pdf} \includegraphics<3>[width=1\textwidth]{bb_measure_true_phase.py.F0.05153.pdf} \end{figure} \end{frame} \begin{frame}{Sine: Signal to Noise} \begin{figure} \includegraphics[width=0.8\textwidth]{beacon/time_res_vs_snr.pdf} \end{figure} \begin{columns} \begin{column}{0.3\textwidth} \end{column} \begin{column}{0.7\textwidth} \tiny\begin{equation*} p_\PTrue(\pTrue; s, \sigma) = \frac{ e^{-\left(\frac{s^2}{2\sigma^2}\right)} }{ 2 \pi } + \sqrt{\frac{1}{2\pi}} \frac{s}{\sigma} e^{-\left( \frac{s^2}{2\sigma^2}\sin^2{\pTrue} \right)} \frac{\left( 1 + \erf{ \frac{s \cos{\pTrue}}{\sqrt{2} \sigma }} \right)}{2} \cos{\pTrue} \end{equation*} \end{column} \end{columns} \end{frame} \begin{frame}{Simulation: Phase: Baseline} Previously, matrix minimisation \begin{block}{} @Baseline $i,j$: $\Delta \varphi_{ij} = \varphi(\sigma_i) - \varphi(\sigma_j)$ \\ Minimise matrix: $\left(\begin{matrix} \Delta_{11} & \Delta_{12} & \Delta_{13} & \\ \Delta_{21} & \Delta_{22} & \Delta_{23} & \\ \Delta_{31} & \Delta_{32} & \Delta_{33} & \\ \end{matrix}\right)$ \end{block} \begin{figure} \includegraphics<1>[width=1\textwidth]{bc_baseline_phase_deltas.py.0ns.1.F0.05153.pdf} \includegraphics<2>[width=1\textwidth]{bc_baseline_phase_deltas.py.5ns_gauss1.F0.05153.pdf} \end{figure} \end{frame} \begin{frame}{Simulation: Period $k$} \begin{block}{} Interferometry while allowing to shift by $T = 1/f_\mathrm{beacon}$ \end{block} \begin{figure} \includegraphics<1>[width=0.8\textwidth]{figs/ca_period_from_shower.py.loc12.0-2894.2-7780.1.i5.run2.pdf} \includegraphics<2>[width=0.8\textwidth]{figs/ca_period_from_shower.py.loc12.0-2894.2-7780.1.i5.run2.zoomed.peak.pdf} \includegraphics<3>[width=0.8\textwidth]{figs/ca_period_from_shower.py.loc12.0-2894.2-7780.1.i5.run2.zoomed.beacon.pdf} \includegraphics<4>[width=0.8\textwidth]{figs/bc_period_from_shower.py.maxima.run0.0ns.pdf} \end{figure} \end{frame} % %\begin{frame}{Interferometry} % \begin{figure} % \includegraphics<1>[width=1\textwidth]{figs/reconstruct_5ns.pdf} % \includegraphics<2>[width=1\textwidth]{figs/reconstruct_15ns.pdf} % \end{figure} %\end{frame} \end{document}