mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-11-22 23:13:35 +01:00
Eric Teunis de Boone
2e74858027
following the restructuring in 580521d
, some parts have been moved to their new chapters.
199 lines
5.8 KiB
TeX
199 lines
5.8 KiB
TeX
% vim: fdm=marker fmr=<<<,>>>
|
|
\documentclass[../thesis.tex]{subfiles}
|
|
|
|
\graphicspath{
|
|
{.}
|
|
{../../figures/}
|
|
{../../../figures/}
|
|
}
|
|
|
|
\begin{document}
|
|
\chapter{Measuring with Radio Antennas}
|
|
\label{sec:waveform}
|
|
Electric fields,
|
|
Antenna Polarizations,
|
|
Frequency Bandwidth,
|
|
\\
|
|
|
|
Time Domain,
|
|
Sampling,
|
|
Waveform + Time vector,
|
|
\\
|
|
|
|
Analysis:
|
|
Fourier Transforms,
|
|
Correlation
|
|
|
|
\hrule
|
|
|
|
Radio antennas are sensitive to changes in their surrounding electric fields.
|
|
Depending on the antenna geometry, multiple polarisations of the electric field can be recorded simultaneously.
|
|
\\
|
|
|
|
Recording
|
|
|
|
|
|
|
|
\section{Analysis Methods}% <<<
|
|
\label{sec:waveform:analysis}
|
|
|
|
\subsection{Correlation}% <<<<
|
|
\label{sec:correlation}
|
|
\Todo{intro}
|
|
The correlation is a measure of how similar two signals $u(t)$ and $v(t)$ are as a function of a time delay $\tau$.
|
|
|
|
It is defined as
|
|
\begin{equation}
|
|
\label{eq:correlation_cont}
|
|
\phantom{,}
|
|
\Corr(\tau; u,v) = \int_{-\infty}^{\infty} \dif t \, u(t)\, v^*(t-\tau)
|
|
,
|
|
\end{equation}
|
|
where the integral reduces to a sum for a finite amount of samples in either $u(t)$ or $v(t)$.
|
|
Still, $\tau$ remains a continuous variable.
|
|
|
|
\begin{figure}
|
|
\begin{subfigure}{\textwidth}
|
|
\includegraphics[width=\textwidth]{pulse/waveform_12_correlation.pdf}
|
|
\caption{
|
|
Correlation
|
|
}%
|
|
\label{subfig:correlation}
|
|
\end{subfigure}%
|
|
\\
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{pulse/waveform_1.pdf}
|
|
\caption{
|
|
Waveform 1
|
|
}
|
|
\label{}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{pulse/waveform_2.pdf}
|
|
\caption{
|
|
Waveform 2
|
|
}
|
|
\label{}
|
|
\end{subfigure}
|
|
\caption{
|
|
Top: Correlation of Waveform 1 and Waveform 2
|
|
}
|
|
\label{fig:correlation}
|
|
\end{figure}
|
|
|
|
% >>>
|
|
\subsection{Fourier Transform}% <<<<
|
|
\label{sec:fourier}
|
|
\Todo{intro}
|
|
|
|
% DTFT from CTFT
|
|
The continuous formulation of the \acrlong{FT} takes the following form,
|
|
\begin{equation}
|
|
\label{eq:fourier}
|
|
\phantom{.}
|
|
X(f) = \int_\infty^\infty \dif{t}\, x(t)\, e^{-i 2 \pi f t}
|
|
.
|
|
\end{equation}
|
|
It decomposes the signal $x(t)$ into complex-valued plane waves $X(f)$ of frequency $f$.
|
|
|
|
When $x(t)$ is sampled at discrete times, the integral of \eqref{eq:fourier} is discretized in time to result in the \acrlong{DTFT}:
|
|
\begin{equation}
|
|
%\tag{DTFT}
|
|
\label{eq:fourier:dtft}
|
|
X(f) = \sum_{n=0}^{N-1} x(t[n])\, e^{ -i 2 \pi f t[n]}
|
|
\end{equation}
|
|
where $x(t) \in \mathcal{R} $ is sampled at times $t[n]$.
|
|
Considering a finite sampling size $N$ and periodicity of the signal, the bounds of the integral in \eqref{eq:fourier} collapse to $t[0]$ up to $t[N]$.
|
|
\\
|
|
From this it follows that the lowest resolvable frequency is $f_\mathrm{lower} = \tfrac{1}{T} = \tfrac{1}{t[N] - t[0]}$.
|
|
\\
|
|
Additionally, when the sampling of $x(t)$ is equally spaced, the $t[n]$ terms can be written as a sequence, $t[n] - t[0] = n \Delta t = \tfrac{n}{f_s}$, with $f_s$ the sampling frequency.
|
|
The highest resolvable frequency, known as the Nyquist frequency, is limited by this sampling frequency as $f_\mathrm{nyquist} = \tfrac{f_s}{2}$.
|
|
\\
|
|
|
|
% DFT sampling of DTFT / efficient multifrequency FFT
|
|
Implementing the above decomposition of $t[n]$, \eqref{eq:fourier:dtft} can be rewritten in terms of multiples $k$ of the sampling frequency, becoming the \acrlong{DFT}
|
|
\begin{equation*}
|
|
\label{eq:fourier:dft}
|
|
\phantom{,}
|
|
X(k) = \sum_{n=0}^{N-1} x[n]\, \cdot e^{ -i 2 \pi {\frac{k n}N} }
|
|
,
|
|
\end{equation*}
|
|
with $k = \tfrac{f}{f_s}$.
|
|
For integer $0 \leq k < N $, efficient algorithms exist that derive all $X( 0 \leq k < N )$ in $\mathcal{O}( N \log N )$ calculations, a~\acrlong{FFT}, sampling a subset of the frequencies.\Todo{citation?}
|
|
|
|
|
|
\begin{figure}
|
|
\includegraphics[width=\textwidth]{fourier/dtft_dft_comparison.pdf}
|
|
\caption{
|
|
Comparison of the \gls{DTFT} and \gls{DFT} of the same waveform.
|
|
The \gls{DFT} can be interpreted as sampling the \gls{DTFT}
|
|
}
|
|
\label{fig:fourier:dtft_dft}
|
|
\end{figure}
|
|
\bigskip
|
|
|
|
% Linearity fourier for real/imag
|
|
In the previous equations, the resultant quantity $X(f)$ is a complex value.
|
|
Since a complex plane wave can be linearly decomposed as
|
|
\begin{equation*}
|
|
\phantom{,}
|
|
\label{eq:complex_wave_decomposition}
|
|
\begin{aligned}
|
|
e^{-i x}
|
|
&
|
|
= \cos(x) + i\sin(-x)
|
|
%\\ &
|
|
= \Re\left(e^{-i x}\right) + i \Im\left( e^{-i x} \right)
|
|
,
|
|
\end{aligned}
|
|
\end{equation*}
|
|
the above transforms can be decomposed into explicit real and imaginary parts aswell,
|
|
i.e.,~\eqref{eq:fourier:dtft} becomes
|
|
\begin{equation}
|
|
\phantom{.}
|
|
\label{eq:fourier:dtft_decomposed}
|
|
\begin{aligned}
|
|
X(f)
|
|
&
|
|
= X_R(f) + i X_I(f)
|
|
%\\ &
|
|
\equiv \Re(X(f)) + i \Im(X(f))
|
|
\\ &
|
|
= \sum_{n=0}^{N-1} \, x[n] \, \cos( 2\pi f t[n] )
|
|
- i \sum_{n=0}^{N-1} \, x[n] \, \sin( 2\pi f t[n] )
|
|
.
|
|
\end{aligned}
|
|
\end{equation}
|
|
|
|
% FT term to phase and magnitude
|
|
The normalised amplitude at a given frequency $A(f)$ is calculated from \eqref{eq:fourier:dtft} as
|
|
\begin{equation}
|
|
\label{eq:complex_magnitude}
|
|
\phantom{.}
|
|
A(f) \equiv \frac{ 2 \sqrt{ X_R(f)^2 + X_I(f)^2 } }{N}
|
|
.
|
|
\end{equation}
|
|
Likewise, the complex phase at a given frequency $\pTrue(f)$ is obtained by
|
|
\begin{equation}
|
|
\label{eq:complex_phase}
|
|
\phantom{.}
|
|
\pTrue(f) \equiv \arctantwo\left( X_I(f), X_R(f) \right)
|
|
.
|
|
\end{equation}
|
|
Note the factor $2$ in the definition of the amplitude in \eqref{eq:complex_magnitude}.
|
|
It is introduced to compensate for expecting a real input signal $x(t)$ and mapping negative frequencies to their positive equivalents.
|
|
\\
|
|
|
|
% Recover A\cos(2\pi t[n] f + \phi) using above definitions
|
|
Applying \eqref{eq:fourier:dtft_decomposed} to a signal $x(t) = A\cos(2\pi t[n] f + \pTrue)$ with the above definitions obtains
|
|
an amplitude $A$ and phase $\pTrue$ at frequency $f$.
|
|
When the minus sign in the exponent of \eqref{eq:fourier} is not taken into account, the calculated phase in \eqref{eq:complex_phase} will have an extra minus sign.
|
|
|
|
|
|
% >>>>
|
|
\subsubsection{Hilbert Transform (optional)}% <<<<
|
|
% >>>>
|
|
% >>>
|
|
\end{document}
|