m-thesis-documentation/presentations/2023-06-01_step_up_interview/2023-STEP_UP.tex

424 lines
12 KiB
TeX

%\documentclass[notes]{beamer}
\documentclass[]{beamer}
%%%%%%%%
% Goal: show enthousiasm, knowledge and drive about the field
\usepackage[british]{babel}
\usepackage{amsmath}
\usepackage{hyperref}
\usepackage[backend=bibtex,style=trad-plain]{biblatex}
\usepackage{appendixnumberbeamer}
\usepackage{graphicx}
\graphicspath{{.}{./figures/}{../../figures/}}
\usepackage{todo}
\addbibresource{../../../bibliotheca/bibliography.bib}
\newcommand{\imagesource}[1]{~\\[0pt]\vspace*{-7pt}\hspace*{10pt}\hbox{\tiny#1}}
\newcommand{\imagecredit}[1]{\imagesource{Credit:\thinspace#1}}
\newcommand{\imagecite}[1]{\imagesource{\textcite{#1}}}
% Disable Captions
\setbeamertemplate{caption}{\raggedright\small\insertcaption\par}
% no to navigation, yes to frame numbering
\beamertemplatenavigationsymbolsempty
\setbeamerfont{page number in head/foot}{size=\normalsize}
\setbeamertemplate{page number in head/foot}{\insertframenumber/\insertmainframenumber}
%\setbeamercolor{page number in head/foot}{fg=red}
\setbeamerfont{section in head/foot}{size=\small}
\setbeamercolor{section in head/foot}{fg=gray}
\setbeamertemplate{section in head/foot}{\textit{\insertsectionhead}}
%\setbeamertemplate{footline}[frame number]
\setbeamertemplate{footline}
{%
\leavevmode%
\hbox{%
\begin{beamercolorbox}[wd=.7\paperwidth,ht=2.25ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{title in head/foot}%
\usebeamertemplate*{section in head/foot}%
\hfill%
\end{beamercolorbox}
\begin{beamercolorbox}[wd=.2\paperwidth,ht=2.25ex,dp=1ex,sep=0pt]{my empty section}
\hfill%
\end{beamercolorbox}
\begin{beamercolorbox}[wd=.1\paperwidth,ht=2.25ex,dp=1ex,leftskip=1em,rightskip=1em,sep=0pt]{page number in head/foot}%
\hfill%
\usebeamertemplate*{page number in head/foot}%
\end{beamercolorbox}}%
}
\hypersetup{pdfpagemode=UseNone} % don't show bookmarks on initial view
\title[STEP-UP: Investigating interferometry with GRAND]{% and BEACON]{
{ \large STEP'UP Interview}\\
{
Investigating interferometry with\\
GRAND\footnote{Giant Radio Array for Neutrino Detection}
% and BEACON\footnote{Beam forming Elevated Array for COsmic Neutrinos}
}
}
\date{May $30^{\text{\tiny{th}}}$, 2023}
\author[E.T. de Boone]{
E.T. de Boone
\\
\vspace{2em}
Advisor: Olivier Martineau, LPNHE\\
\quad\quad\quad\quad\quad Harm Schoorlemmer, IMAPP
}
\begin{document}
{
\setbeamertemplate{footline}{} % no page number here
\section{Start}
\frame{ \titlepage }
}
\section{My studies}
\begin{frame}{My studies}
Studies @Radboud University, Nijmegen
\begin{itemize}
\item Bachelor's from 2012 to 2020 \\
\quad {\small Minor: Astrophysics}
\item Master's from 2020 to 2023 (expected) \\
\quad {\small Specialisation: Particle and Astrophysics}\\
\quad {\small Minor: Computational Data Science}
\item Master's Internship (November 2021 - July 2023) \\
\quad {\small Supervisor: Harm Schoorlemmer, IMAPP, Radboud University}\\
\quad {\small ``Enhancing Timing Accuracy in Air Shower Radio Detectors''}
\end{itemize}
\vspace*{2em}
Interests:
\begin{itemize}
\item Hardware experimenting
\item Ultra High Energy particles
\item Radio detection
\end{itemize}
\end{frame}
% Context
%%%%%%%%%
\section{Radio and Airshowers}
\begin{frame}{Ultra High Energy particles}
\begin{figure}
\includegraphics[width=\textwidth]{grand/astroparticletypes_grand.jpg}%
\imagecite{GRAND:2018iaj}
\end{figure}
\end{frame}
\begin{frame}{Radio signals and Airshowers}
\begin{figure}
\includegraphics[width=\textwidth]{grand/GRAND-detection-principle-1.png}%
\imagecite{GRAND:2018iaj}
\end{figure}
\end{frame}
\begin{frame}{Advantages of Radio Interferometry}
\begin{columns}
\begin{column}{0.52\textwidth}
Interferometric Radio Observables:%
\begin{itemize}
\vspace*{1em}
\item<1-> Shower axis%\; Relevant for $\nu$s pointing back to sources
\vspace*{1em}
\item<2-> Depth of shower\\
$\mapsto$ composition measurement%
\\
\quad\;(Fe, p, $\gamma$, $\nu$)
\end{itemize}
\end{column}
\begin{column}{0.48\textwidth}
\begin{figure}
\hspace*{-1.5em}
\includegraphics[width=1.2\textwidth]{2006.10348/fig01.png}%
\imagecite{Schoorlemmer:2020low}
\caption[caption]{
\centering
\tiny{
orange dot: true shower axis;\hspace{\textwidth}
blue dot: maximum in map
}
}
\end{figure}
\end{column}
\end{columns}
\end{frame}
% Radio Interferometry
%%%%%%%%%%%%%%%%%%%%%%
\section{Radio Interferometry}
\begin{frame}{Radio Interferometry: Concept}
\begin{columns}
\begin{column}{0.4\textwidth}
\begin{figure}
\includegraphics<1>[width=\textwidth]{radio_interferometry/rit_schematic_base.pdf}%
\includegraphics<2>[width=\textwidth]{radio_interferometry/rit_schematic_far.pdf}%
\includegraphics<3>[width=\textwidth]{radio_interferometry/rit_schematic_close.pdf}%
\includegraphics<4>[width=\textwidth]{radio_interferometry/rit_schematic_true.pdf}%
\end{figure}
\end{column}
\begin{column}{0.6\textwidth}
\vspace*{\fill}
\begin{itemize}
\item<1-> Measure signal $S_i(t)$ at antenna $\vec{a_i}$
\item<2-> Calculate light travel time \\[5pt]
\quad $\Delta_i(\vec{x}) = \frac{ \left| \vec{x} - \vec{a_i} \right| }{c} n_{eff}$
\item<2-> Sum waveforms accounting \\
for time delay \\[5pt]
\quad $S(\vec{x}, t) = \sum S_i( t + \Delta_i(\vec{x}) )$
\end{itemize}
\vspace*{\fill}
\begin{figure}% Spatially
\includegraphics<1>[width=0.8\textwidth]{radio_interferometry/single_trace.png}%
\includegraphics<2>[width=0.8\textwidth]{radio_interferometry/trace_overlap_bad.png}%
\includegraphics<3>[width=0.8\textwidth]{radio_interferometry/trace_overlap_medium.png}%
\includegraphics<4>[width=0.8\textwidth]{radio_interferometry/trace_overlap_best.png}%
\end{figure}
\end{column}
\end{columns}
\end{frame}
\section{Radio and Airshowers}
\begin{frame}{Advantages of Radio Interferometry}
\begin{columns}
\begin{column}{0.47\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{2006.10348/fig01.png}%
\end{figure}
\end{column}
\hfill
\begin{column}{0.47\textwidth}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{2006.10348/fig03_b.png}%
\end{figure}
\end{column}
\end{columns}
\begin{center}
\imagecite{Schoorlemmer:2020low}
\end{center}
\end{frame}
% My Internship
%%%%%%%%%%%%%%%
\section{My Internship}
\begin{frame}{Timing Constraint for Radio Interferometry}
\vspace*{ -2em }
Required time accuracy $< 1 \mathrm{ns}$ not provided by GNSS $ \gtrsim 5 \mathrm{ns}$.
\vspace{ 2em }
\begin{columns}
\begin{column}{0.5\textwidth}
\visible<2->{%
Additional synchronisation\\
using physics band
\begin{itemize}
\item Pulsed beacon
\item<3-> Continuous (Sine)
\end{itemize}
\vspace{20pt}
\includegraphics[width=\textwidth]{beacon/array_setup_gps_transmitter_cows.png}%
}%
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}% Clock error fixes
\includegraphics<1>[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_none.axis.trace_overlap.repair_none.pdf}%
\includegraphics<2>[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.no_offset.axis.trace_overlap.no_offset.pdf}%
\includegraphics<3>[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}%
\includegraphics<4>[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}%
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Enhancing Timing Accuracy in Air Shower Radio Detectors}
\begin{columns}
\begin{column}{0.5\textwidth}
\centering
Pulse method
\includegraphics[width=1.1\textwidth]{pulse/time_res_vs_snr_multiple_dt.pdf}
\end{column}
\begin{column}{0.5\textwidth}
\centering
Sine method
\includegraphics[width=1.1\textwidth]{beacon/time_res_vs_snr.pdf}
\end{column}
\end{columns}
\end{frame}
% Towards GRAND
%%%%%%%%%%%%%%%%%%%%
\section{GRAND and Interferometry}
\begin{frame}{GRAND and Interferometry}
\begin{columns}
\begin{column}{0.6\textwidth}
GRAND in heavy development,\\
relying on radio measurements\\
\vspace{2em}
Special interest in horizontal showers\\
\vspace{2em}
Neutrino's point back to source\\
\visible<2->{
\vspace*{\fill}
\begin{center}
\begin{minipage}{.6\textwidth}
\hrule
\centering
\vspace{ 2em }
\textit{Thank you!}
\end{minipage}
\end{center}
%\vspace{ 4em }
}
\end{column}
\begin{column}{0.4\textwidth}
\begin{figure}
\includegraphics<1>[width=\textwidth]{2006.10348/fig03_b.png}%
\includegraphics<2>[width=\textwidth]{2006.10348/fig01_a.png}%
\imagecite{Schoorlemmer:2020low}
\end{figure}
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%
% Backup slides
%%%%%%%%%%%%%%%
\appendix
\section{Supplemental material}
\begin{frame}[c]
\centering
\Large {
\textcolor{blue} {
Supplemental material
}
}
\end{frame}
\begin{frame}{Airshower development}
\begin{figure}
\includegraphics[width=0.9\textwidth]{1607.08781/fig02a_airshower+detectors.png}
\imagecite{Schroder:2016hrv}
\end{figure}
\end{frame}
\subsection{Radio Emission}
\begin{frame}{Polarised Radio Emission}
\begin{columns}
\begin{column}{0.2\textwidth}
\centering
Geosynchrotron
\end{column}
\begin{column}{0.7\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}%
\end{column}
\end{columns}
\vfill
\begin{columns}
\begin{column}{0.2\textwidth}
\centering
Askaryan
\end{column}
\begin{column}{0.7\textwidth}
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}%
\imagecite{Huege:2017bqv}
\end{column}
\end{columns}
% \vfill
\end{frame}
%%%%%%%%%
\subsection{Single frequency beacon synchronisation}
\begin{frame}{Short period beacon synchronisation}
\begin{figure}
\includegraphics<1>[width=\textwidth]{beacon/08_beacon_sync_timing_outline.pdf}%
\includegraphics<2>[width=\textwidth]{beacon/08_beacon_sync_synchronised_outline.pdf}%
\includegraphics<3>[width=\textwidth]{beacon/08_beacon_sync_synchronised_period_alignment.pdf}%
\end{figure}
\end{frame}
\begin{frame}{Time resolving short period beacon}
\begin{figure}
\includegraphics<1>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}
\includegraphics<2>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}
\includegraphics<3>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}
\includegraphics<4>[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf}
\end{figure}
\end{frame}
%%%%%%%%%%
\subsection{GNSS clock stability}
\begin{frame}{GNSS clock stability I}
\begin{columns}
\begin{column}{0.4\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{grand/setup/antenna-to-adc.pdf}
\caption{
GRAND Digitizer Unit's ADC to antennae
}
\end{figure}
\end{column}
\hfill
\begin{column}{0.5\textwidth}
\begin{figure}
\includegraphics[width=\textwidth]{grand/setup/channel-delay-setup.pdf}%
\caption{
Channel filterchain delay experiment
}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{GNSS clock stability II}
\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{grand/setup/grand-gps-setup.pdf}
\caption{
GNSS stability experiment
}
\end{figure}
\end{frame}
\subsubsection{In the field}
\begin{frame}{GNSS clock stability II}
\begin{columns}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{images/IMG_20220819_154801.jpg}
\end{column}
\begin{column}{0.5\textwidth}
\includegraphics[width=\textwidth]{images/IMG_20220815_161244.jpg}
\end{column}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%
% Bibliography
%%%%%%%%%%%%%%
\section*{References}
\begin{frame}[allowframebreaks]
\frametitle{References}
\printbibliography
\end{frame}
\end{document}