mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-11-14 03:13:37 +01:00
164 lines
4.2 KiB
TeX
164 lines
4.2 KiB
TeX
% vim: fdm=marker fmr=<<<,>>>
|
|
\documentclass[../thesis.tex]{subfiles}
|
|
|
|
\graphicspath{
|
|
{.}
|
|
{../../figures/}
|
|
{../../../figures/}
|
|
}
|
|
|
|
\begin{document}
|
|
\chapter{Introduction}
|
|
\label{sec:introduction}
|
|
|
|
|
|
\section{Cosmic Particles}
|
|
\label{sec:crs}
|
|
Particles from outer space,
|
|
Particle type,
|
|
Energy,
|
|
magnetic fields -- origin,
|
|
|
|
\hrule
|
|
|
|
In the beginning of the 20th century, various types of radiation were discovered.
|
|
Dubbed ``Cosmic Rays'', one type was determined to come from beyond the atmosphere.
|
|
|
|
|
|
\subsection{Air Showers}
|
|
\label{sec:airshowers}
|
|
Particle cascades,
|
|
Xmax?,
|
|
Radio emission,
|
|
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=0.3\textwidth]{airshower/shower_development_depth_iron_proton_photon.pdf}
|
|
\caption{
|
|
From H. Schoorlemmer.
|
|
Shower development as a function of atmospheric depth for an energy of $10^{19}\eV$.
|
|
}
|
|
\label{fig:airshower:depth}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
\centering
|
|
\begin{subfigure}{0.47\textwidth}
|
|
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_geomagnetic.png}%
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}{0.47\textwidth}
|
|
\includegraphics[width=\textwidth]{airshower/airshower_radio_polarisation_askaryan.png}%
|
|
\end{subfigure}
|
|
\caption{
|
|
From \protect \cite{Schoorlemmer:2012xpa} \protect\cite{Huege:2017bqv}
|
|
\protect \Todo{Krijn?}
|
|
Radio Emission mechanisms (left: geomagnetic, right: charge-excess)
|
|
}
|
|
\end{figure}
|
|
|
|
\subsection{Experiments}
|
|
\label{sec:detectors}
|
|
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=0.8\textwidth]{astroparticle/The_CR_spectrum_2023.pdf}
|
|
\caption{
|
|
From \protect \cite{The_CR_spectrum}.
|
|
Cosmic Ray flux as a function of energy-per-nucleon.
|
|
}
|
|
\label{fig:cr_flux}
|
|
\end{figure}
|
|
|
|
|
|
Cosmic particles have been observed over a large range of energies.
|
|
However, for increasing energies, their flux decreases dramatically (see Figure~\ref{fig:cr_flux}).
|
|
To gather decent statistics at these highest energies on a practical timescale, observatories therefore have to span huge areas.
|
|
\\
|
|
|
|
\hrule
|
|
Standalone devices,
|
|
\gls*{Auger},
|
|
AugerPrime RD,
|
|
\gls*{GRAND},
|
|
\gls*{LOFAR}?,
|
|
|
|
|
|
\section{Radio Interferometry}
|
|
\label{sec:interferometry}
|
|
Rough outline of Interferometry?
|
|
\\
|
|
|
|
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=0.5\textwidth]{radio_interferometry/rit_schematic_true.pdf}%
|
|
% \includegraphics[width=0.5\textwidth]{radio_interferometry/Schematic_RIT_extracted.png}
|
|
% \caption{From H. Schoorlemmer}
|
|
\end{figure}
|
|
|
|
\begin{equation}\label{eq:propagation_delay}%<<<
|
|
\Delta_i(\vec{x}) = \frac{ \left|{ \vec{x} - \vec{a_i} }\right| }{c} n_{eff}
|
|
\end{equation}%>>>
|
|
|
|
|
|
\begin{equation}\label{eq:interferometric_sum}%<<<
|
|
S(\vec{x}, t) = \sum_i S_i(t + \Delta_i(\vec{x}))
|
|
\end{equation}%>>>
|
|
|
|
|
|
\begin{figure}
|
|
\centering
|
|
\begin{subfigure}[t]{0.3\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_bad.png}
|
|
\label{fig:trace_overlap:bad}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}[t]{0.3\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_medium.png}
|
|
\label{fig:trace_overlap:medium}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}[t]{0.3\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap_best.png}
|
|
\label{fig:trace_overlap:best}
|
|
\end{subfigure}
|
|
\caption{
|
|
Trace overlap due to wrong positions
|
|
}
|
|
\label{fig:trace_overlap}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=0.7\textwidth]{2006.10348/fig03_b.png}%
|
|
\caption{
|
|
From \protect \cite{Schoorlemmer:2020low}.
|
|
$\Xmax$ resolution as a function of detector-to-detector synchronisation.
|
|
}
|
|
\label{fig:xmax_synchronise}
|
|
\end{figure}
|
|
|
|
\section{Time Synchronisation}
|
|
\label{sec:timesynchro}
|
|
The main method of synchronising multiple stations is by employing a \gls{GNSS}.
|
|
This system should deliver timing with an accuracy in the order of $10\ns$ \cite{} (see Section~\ref{sec:grand:gnss}).
|
|
\\
|
|
|
|
Need reference system with better accuracy to constrain current mechanism (Figure~\ref{fig:reference-clock}).
|
|
|
|
%\begin{figure}
|
|
% \centering
|
|
% \includegraphics[width=0.5\textwidth]{clocks/reference-clock.pdf}
|
|
% \caption{
|
|
% Using a reference clock to compare two other clocks.
|
|
% \protect \todo{
|
|
% redo figure with less margins,
|
|
% remove spines,
|
|
% rotate labels
|
|
% }
|
|
% }
|
|
% \label{fig:reference-clock}
|
|
%\end{figure}
|
|
|
|
\end{document}
|