mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m.internship-documentation.git
synced 2024-11-12 18:43:30 +01:00
Eric Teunis de Boone
2e74858027
following the restructuring in 580521d
, some parts have been moved to their new chapters.
167 lines
5.9 KiB
TeX
167 lines
5.9 KiB
TeX
\documentclass[../thesis.tex]{subfiles}
|
|
|
|
\graphicspath{
|
|
{.}
|
|
{../../figures/}
|
|
{../../../figures/}
|
|
}
|
|
|
|
\begin{document}
|
|
\chapter{Single Sine Beacon and Interferometry}
|
|
\label{sec:single}
|
|
|
|
% period multiplicity/degeneracy
|
|
A problem with a continuous beacon is resolving the period multiplicity $\Delta k_{ij}$ in \eqref{eq:synchro_mismatch_clocks_periodic}.
|
|
\Todo{copy equation here}
|
|
It can be resolved by declaring a shared time $\tTrueEmit$ common to the stations in some fashion (e.g.~a~pulse), and counting the cycles since $\tTrueEmit$ per station.
|
|
\\
|
|
|
|
\bigskip
|
|
% Same transmitter / Static setup
|
|
When the signal defining $\tTrueEmit$ is emitted from the same transmitter that sends out the beacon signal, the number of periods $k$ can be obtained directly from the signal.
|
|
If, however, this calibration signal is sent from a different location, the time delays for this signal are different from the time delays for the beacon.
|
|
In a static setup, these distances should be measured to have a time delay accuracy of less than one period of the beacon signal.\todo{reword sentence}
|
|
\\
|
|
|
|
\bigskip
|
|
% Dynamic setup
|
|
If measuring the distances to the required accuracy is not possible, a different method must be found to obtain the correct number of periods.
|
|
The total time delay in \eqref{eq:phase_diff_to_time_diff} contains a continuous term $\Delta t_\phase$ that can be determined from the beacon signal, and a discrete term $k T$ where $k$ is the unknown discrete quantity.
|
|
\\
|
|
Since $k$ is discrete, the best time delay might be determined from the calibration signal by calculating the correlation for discrete time delays $kT$.
|
|
\\
|
|
|
|
\bigskip
|
|
% Airshower gives t0
|
|
In the case of radio detection of air showers, the very signal of the air shower itself can be used as the calibration signal.
|
|
This falls into the dynamic setup described above.
|
|
|
|
\subsection{Lifting the Period Degeneracy with an Air Shower}% <<<
|
|
|
|
\begin{figure}
|
|
%\includegraphics
|
|
\caption{
|
|
Finding the maximum correlation for integer period shifts between two waveforms recording the same (simulated) air shower.
|
|
}
|
|
\label{}
|
|
\end{figure}
|
|
|
|
\begin{figure}
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run0.pdf}
|
|
\caption{
|
|
Combined amplitude maxima near shower axis
|
|
}
|
|
\label{fig:findks:maxima}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run0.power.pdf}
|
|
\caption{
|
|
Power measurement near shower axis with the $k$s belonging to the maximum in the amplitude maxima.
|
|
\Todo{indicate maximum in plot, square figure}
|
|
}
|
|
\label{fig:findks:reconstruction}
|
|
\end{subfigure}
|
|
\\
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.maxima.run1.pdf}
|
|
\caption{
|
|
Maxima near shower axis, zoomed to the location in \ref{fig:findks:reconstruction} with the highest amplitude.
|
|
}
|
|
\label{fig:findks:maxima:zoomed}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{ZH_simulation/findks/ca_period_from_shower.py.reconstruction.run1.power.pdf}
|
|
\caption{
|
|
Power measurement of new
|
|
}
|
|
\label{}
|
|
\end{subfigure}
|
|
\caption{
|
|
Iterative $k$-finding algorithm:
|
|
First, in the upper left pane, find the set of period shifts $k$ per point that returns the highest maximum amplitude.
|
|
}
|
|
\label{fig:findks}
|
|
\end{figure}
|
|
|
|
\subsection{Result}
|
|
\begin{figure}
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_none.axis.trace_overlap.repair_none.pdf}
|
|
\caption{
|
|
Randomised clocks
|
|
}
|
|
\label{fig:simu:sine:period:repair_none}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_phases.axis.trace_overlap.repair_phases.pdf}
|
|
\caption{
|
|
Clock syntonisation
|
|
}
|
|
\label{fig:simu:sine:period:repair_phases}
|
|
\end{subfigure}
|
|
\\
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.no_offset.axis.trace_overlap.no_offset.pdf}
|
|
\caption{
|
|
True clocks
|
|
}
|
|
\label{fig:simu:sine:periods:no_offset}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/trace_overlap/on-axis/dc_grid_power_time_fixes.py.repair_full.axis.trace_overlap.repair_full.pdf}
|
|
\caption{
|
|
Full resolved clocks
|
|
}
|
|
\label{fig:simu:sine:periods:repair_full}
|
|
\end{subfigure}
|
|
\caption{
|
|
Trace overlap for a position on the true shower axis.
|
|
}
|
|
\label{fig:simu:sine:periods}
|
|
\end{figure}
|
|
|
|
|
|
\begin{figure}
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_none.scale4d.pdf}
|
|
\caption{
|
|
Randomised clocks
|
|
}
|
|
\label{fig:grid_power:repair_none}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}{0.45\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_phases.scale4d.pdf}
|
|
\caption{
|
|
Clock syntonisation
|
|
}
|
|
\label{fig:grid_power:repair_phases}
|
|
\end{subfigure}
|
|
\\
|
|
\begin{subfigure}{0.5\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.no_offset.scale4d.pdf}
|
|
\caption{
|
|
True clocks
|
|
}
|
|
\label{fig:grid_power:no_offset}
|
|
\end{subfigure}
|
|
\hfill
|
|
\begin{subfigure}{0.5\textwidth}
|
|
\includegraphics[width=\textwidth]{radio_interferometry/dc_grid_power_time_fixes.py.X400.repair_all.scale4d.pdf}
|
|
\caption{
|
|
Full resolved clocks
|
|
}
|
|
\label{fig:grid_power:repair_full}
|
|
\end{subfigure}
|
|
\caption{
|
|
Power measurements near the simulation axis with varying degrees of clock deviations.
|
|
}
|
|
\label{fig:grid_power_time_fixes}
|
|
\end{figure}
|
|
% >>>
|
|
\end{document}
|