m-thesis-introduction/simulations/11_pulsed_timing.py

323 lines
11 KiB
Python
Raw Normal View History

2023-04-11 14:51:08 +02:00
#!/usr/bin/env python3
from lib import util
from scipy import signal, interpolate
import matplotlib.pyplot as plt
import numpy as np
rng = np.random.default_rng()
class Waveform:
name = None
signal = None
dt = None
2023-04-11 14:51:08 +02:00
_t = None
def __init__(self,signal=None, dt=None, t=None, name=None):
2023-04-11 14:51:08 +02:00
self.signal = signal
self.name = name
if t is not None:
assert len(t) == len(signal)
self._t = t
self.dt = t[1] - t[0]
elif dt is not None:
self.dt = dt
# Lazy evaluation of time
@property
def t(self):
if self._t is None:
return self.dt * np.arange(0, len(self.signal))
return self._t
@t.setter
def t(self, value):
self._t = value
@t.deleter
def t(self):
del self._t
def __len__():
return len(self.signal)
2023-04-11 14:51:08 +02:00
def white_noise_realisation(N_samples, noise_sigma=1, rng=rng):
return rng.normal(0, noise_sigma or 0, size=N_samples)
def antenna_bp(trace, low_bp, high_bp, dt, order=3):
# order < 6 for stability
fs = 1/dt
nyq = 1* fs
low_bp = low_bp / nyq
high_bp = high_bp / nyq
bp_filter = signal.butter(order, [low_bp, high_bp], 'band', fs=fs)
bandpassed = signal.lfilter(*bp_filter, trace)
return bandpassed
def my_correlation(in1, template):
#
2023-04-11 14:51:08 +02:00
in1_long = np.zeros( (len(in1)+2*len(template)) )
in1_long[len(template):-len(template)] = in1
# fill the template with zeros and copy template
template_long = np.zeros_like(in1_long)
template_long[len(template):2*len(template)] = template
lags = np.arange(-len(template), len(in1) ) - len(template)
2023-04-11 14:51:08 +02:00
# do the correlation jig
corrs = np.zeros_like(lags, dtype=float)
for i, l in enumerate(lags):
lagged_template = np.roll(template_long, l)
corrs[i] = np.dot(lagged_template, in1_long)
return corrs, (in1_long, template_long, lags)
def trace_upsampler(template_signal, trace, template_t, trace_t):
template_dt = template.t[1] - template.t[0]
2023-04-11 14:51:08 +02:00
trace_dt = trace_t[1] - trace_t[0]
upsample_factor = trace_dt/template_dt
upsampled_trace_N = np.ceil(len(trace) * upsample_factor)
upsample_factor = int(upsample_factor)
upsampled_trace_N = int(upsampled_trace_N)
# upsample trace
upsampled_trace = np.zeros(upsampled_trace_N)
upsampled_trace[::upsample_factor] = trace
#upsampled_t = np.arange(trace_t[0], trace_t[-1], template_dt)
upsampled_t = template_dt * np.arange(len(upsampled_trace)) + trace_t[0]
return upsampled_trace, upsampled_t
def template_downsampler(template_signal, trace, template_t, trace_t, offset):
pass
if __name__ == "__main__":
import os
import matplotlib
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
template_dt = 5e-2 # ns
bp_freq = (30e-3, 80e-3) # GHz
template_length = 100 # ns
noise_sigma_factor = 1e1 # keep between 10 and 0.1
N_residuals = 50*3
2023-04-11 14:51:08 +02:00
antenna_dt = 2 # ns
antenna_timelength = 2048 # ns
#
# Create the template
#
template = Waveform(None, dt=template_dt, name='Template')
_deltapeak = util.deltapeak(timelength=template_length, samplerate=1/template.dt, offset=10/template.dt)
template.signal = antenna_bp(_deltapeak[0], *bp_freq, (np.sqrt(antenna_dt/template_dt))*template_dt) # TODO: fix sqrt constant
template.peak_sample = _deltapeak[1]
template.peak_time = template.dt * template.peak_sample
2023-04-11 14:51:08 +02:00
if True: # show template
2023-04-11 14:51:08 +02:00
fig, ax = plt.subplots()
ax.set_title("Deltapeak and Bandpassed Template")
ax.set_xlabel("Time [ns]")
ax.set_ylabel("Amplitude")
ax.plot(template.t, max(template.signal)*_deltapeak[0])
ax.plot(template.t, template.signal)
2023-04-11 14:51:08 +02:00
fig.savefig('figures/11_template_deltapeak.pdf')
if True:
plt.close(fig)
2023-04-11 14:51:08 +02:00
#
# Find difference between true and templated times
#
time_residuals = np.zeros(N_residuals)
for j in range(N_residuals):
do_plots = j==0
# receive at antenna
## place the deltapeak signal at a random location
antenna = Waveform(None, dt=antenna_dt, name='Signal')
antenna_true_signal, antenna_peak_sample = util.deltapeak(timelength=antenna_timelength, samplerate=1/antenna.dt, offset=[0.2, 0.8], rng=rng)
antenna.signal = antenna_true_signal
antenna.peak_sample = antenna_peak_sample
antenna.peak_time = antenna.dt * antenna.peak_sample
if do_plots:
print(f"Antenna Peak Time: {antenna.peak_time}")
print(f"Antenna Peak Sample: {antenna.peak_sample}")
if False: # bandpass when emitting the signal
antenna.signal = antenna_bp(antenna.signal, *bp_freq, antenna.dt)
if False: # flip polarisation
antenna.signal *= -1
## Add noise
noise_amplitude = max(template.signal) * noise_sigma_factor
noise_realisation = noise_amplitude * white_noise_realisation(len(antenna.signal))
antenna_unfiltered_signal = antenna.signal + noise_realisation
antenna.signal = antenna_bp(antenna_unfiltered_signal, *bp_freq, antenna.dt)
true_time_offset = antenna.peak_time - template.peak_time
if do_plots: # show signals
fig, axs = plt.subplots(2, sharex=True)
axs[0].set_title("Antenna Waveform")
axs[-1].set_xlabel("Time [ns]")
axs[0].set_ylabel("Amplitude")
axs[0].plot(antenna.t, antenna.signal, label='bandpassed w/ noise', alpha=0.9)
axs[0].plot(antenna.t, antenna_unfiltered_signal, label='true signal w/ noise', alpha=0.9)
axs[0].plot(antenna.t, antenna_true_signal, label='true signal w/o noise', alpha=0.9)
axs[0].legend()
axs[1].set_title("Template")
axs[1].set_ylabel("Amplitude")
axs[1].plot(template.t, template.signal, label='orig')
axs[1].plot(template.t + true_time_offset, template.signal, label='true moved orig')
axs[1].legend()
fig.savefig('figures/11_antenna_signals.pdf')
if True: # zoom
wx = 100
x0 = true_time_offset
old_xlims = axs[0].get_xlim()
axs[0].set_xlim( x0-wx, x0+wx)
fig.savefig('figures/11_antenna_signals_zoom.pdf')
# restore
axs[0].set_xlim(*old_xlims)
if False:
plt.close(fig)
axs2 = None
if True: # upsampled trace
upsampled_trace, upsampled_t = trace_upsampler(template.signal, antenna.signal, template.t, antenna.t)
if do_plots: # Show upsampled traces
fig2, axs2 = plt.subplots(1, sharex=True)
if not hasattr(axs2, '__len__'):
axs2 = [axs2]
axs2[-1].set_xlabel("Time [ns]")
axs2[0].set_ylabel("Amplitude")
axs2[0].plot(antenna.t, antenna.signal, marker='o', label='orig')
axs2[0].plot(upsampled_t, upsampled_trace, label='upsampled')
axs2[0].legend(loc='upper right')
fig2.savefig('figures/11_upsampled.pdf')
wx = 1e2
x0 = upsampled_t[0] + wx - 5
axs2[0].set_xlim(x0-wx, x0+wx)
fig2.savefig('figures/11_upsampled_zoom.pdf')
if True:
plt.close(fig2)
# determine correlations with arguments
lag_dt = upsampled_t[1] - upsampled_t[0]
corrs, (out1_signal, out2_template, lags) = my_correlation(upsampled_trace, template.signal)
else: # downsampled template
raise NotImplementedError
corrs, (out1_signal, out2_template, lags) = my_downsampling_correlation(template.signal, antenna.signal, template.t, antenna.t)
lag_dt = upsampled_t[1] - upsampled_t[0]
# Determine best correlation time
idx = np.argmax(abs(corrs))
best_sample_lag = lags[idx]
best_time_lag = best_sample_lag * lag_dt
time_residuals[j] = best_time_lag - true_time_offset
if do_plots and axs2:
axs2[-1].axvline(best_time_lag, color='r', alpha=0.5, linewidth=2)
# Show the final signals correlated
if do_plots:
fig, axs = plt.subplots(2, sharex=True)
ylabel_kwargs = dict(
#rotation=0,
ha='right',
va='center'
)
axs[-1].set_xlabel("Time [ns]")
offset_list = [
[best_time_lag, dict(label=template.name, color='orange')],
[true_time_offset, dict(label='True offset', color='green')],
]
# Signal
i=0
axs[i].set_ylabel("Amplitude", **ylabel_kwargs)
axs[i].plot(antenna.t, antenna.signal, label=antenna.name)
# Put template on an twinned axis (magnitudes are different)
ax2 = axs[i].twinx()
for i, offset_args in enumerate(offset_list):
this_kwargs = offset_args[1]
offset = offset_args[0]
ax2.axvline(offset + len(template.signal) * (template.t[1] - template.t[0]), color=this_kwargs['color'], alpha=0.7)
ax2.axvline(offset, color=this_kwargs['color'], alpha=0.7)
ax2.plot(offset + template.t, template.signal, **this_kwargs)
# Correlation
i=1
axs[i].set_ylabel("Correlation", **ylabel_kwargs)
axs[i].plot(lags * lag_dt, corrs)
for i, offset_args in enumerate(offset_list):
this_kwargs = offset_args[1]
offset = offset_args[0]
axs[i].axvline(offset, ls='--', **this_kwargs)
if True: # zoom
wx = len(template.signal) * (template.t[1] - template.t[0])/2
t0 = best_time_lag
old_xlims = axs[0].get_xlim()
axs[i].set_xlim( x0-wx, x0+3*wx)
fig.savefig('figures/11_corrs_zoom.pdf')
# restore
axs[i].set_xlim(*old_xlims)
fig.tight_layout()
fig.legend()
fig.savefig('figures/11_corrs.pdf')
if False:
plt.close(fig)
# Make a plot of the time residuals
fig, ax = plt.subplots()
ax.set_title("Template Correlation Lag finding")
ax.set_xlabel("Time Residual [ns]")
ax.set_ylabel("#")
ax.hist(time_residuals, bins='sqrt', density=False)
ax.legend(title=f"template dt: {template.dt: .1e}ns\nantenna dt: {antenna.dt: .1e}ns")
fig.savefig("figures/11_time_residual_hist.pdf")
2023-04-11 14:51:08 +02:00
plt.show()