m-thesis-introduction/simulations/airshower_beacon_simulation/ba_beacon_phases.py

198 lines
5.8 KiB
Python
Raw Normal View History

2022-11-14 20:49:35 +01:00
#!/usr/bin/env python3
# vim: fdm=indent ts=4
import numpy as np
import h5py
import lib
import aa_generate_beacon as beacon
from lib import direct_fourier_transform
from numpy.polynomial import Polynomial
def find_beacon_in_traces(
traces,
t_trace,
f_beacon_estimate = 50e6,
frequency_fit = False,
N_test_freqs = 5e2,
f_beacon_estimate_band = 0.01,
amp_cut = 0.8
):
"""
f_beacon_band is inclusive
traces is [trace, trace, trace, .. ]
"""
amplitudes = np.zeros(len(traces))
phases = np.zeros(len(traces))
frequencies = np.zeros(len(traces))
if frequency_fit: # fit frequency
test_freqs = f_beacon_estimate + f_beacon_estimate_band * np.linspace(-1, 1, int(N_test_freqs)+1)
ft_amp_gen = direct_fourier_transform(test_freqs, t_trace, (x for x in traces))
n_samples = len(t_trace)
for i, ft_amp in enumerate(ft_amp_gen):
real, imag = ft_amp
amps = 1/n_samples * ( real**2 + imag**2)**0.5
# find frequency peak and surrounding
# bins valid for parabola fitting
max_amp_idx = np.argmax(amps)
max_amp = amps[max_amp_idx]
if True:
frequencies[i] = test_freqs[max_amp_idx]
continue
valid_mask = amps >= amp_cut*max_amp
if True: # make sure not to use other peaks
lower_mask = valid_mask[0:max_amp_idx]
upper_mask = valid_mask[max_amp_idx:]
if any(lower_mask):
lower_end = np.argmin(lower_mask[::-1])
else:
lower_end = max_amp_idx
if any(upper_mask):
upper_end = np.argmin(upper_mask)
else:
upper_end = 0
valid_mask[0:(max_amp_idx - lower_end)] = False
valid_mask[(max_amp_idx + upper_end):] = False
if all(~valid_mask):
frequencies[i] = np.nan
continue
# fit Parabola
parafit = Polynomial.fit(test_freqs[valid_mask], amps[valid_mask], 2)
func = parafit.convert()
# find frequency where derivative is 0
deriv = func.deriv(1)
freq = deriv.roots()[0]
frequencies[i] = freq
else:
frequencies[:] = f_beacon_estimate
# evaluate fourier transform at freq for each trace
for i, freq in enumerate(frequencies):
if freq is np.nan:
phases[i] = np.nan
amplitudes[i] = np.nan
continue
real, imag = direct_fourier_transform(freq, t_trace, traces[i])
phases[i] = np.arctan2(real, imag)
amplitudes[i] = 1/len(t_trace) * (real**2 + imag**2)**0.5
return frequencies, phases, amplitudes
if __name__ == "__main__":
from os import path
import sys
f_beacon_band = (49e-3,55e-3) #GHz
allow_frequency_fitting = True
read_frequency_from_file = True
fname = "ZH_airshower/mysim.sry"
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
if not path.isfile(antennas_fname):
print("Antenna file cannot be found, did you try generating a beacon?")
sys.exit(1)
# read in antennas
with h5py.File(antennas_fname, 'a') as fp:
if 'antennas' not in fp.keys():
print("Antenna file corrupted? no antennas")
sys.exit(1)
group = fp['antennas']
f_beacon = None
if read_frequency_from_file and 'tx' in fp:
tx = fp['tx']
if 'f_beacon' in tx.attrs:
f_beacon = tx.attrs['f_beacon']
else:
print("No frequency found in file.")
sys.exit(2)
f_beacon_estimate_band = 0.01*f_beacon
elif allow_frequency_fitting:
f_beacon_estimate_band = (f_beacon_band[1] - f_beacon_band[0])/2
f_beacon = f_beacon_band[1] - f_beacon_estimate_band
else:
print("Not allowed to fit frequency and no tx group found in file.")
sys.exit(2)
N_antennas = len(group.keys())
# just for funzies
found_data = np.zeros((N_antennas, 3))
# Determine frequency and phase
for i, name in enumerate(group.keys()):
ant_group = group[name]
if 'traces' not in ant_group.keys():
print(f"Antenna file corrupted? no 'traces' in {name}")
sys.exit(1)
traces = ant_group['traces']
freqs, phases, amps = find_beacon_in_traces(
traces[1:-1], traces[0],
f_beacon_estimate=f_beacon,
frequency_fit=allow_frequency_fitting,
f_beacon_estimate_band=f_beacon_estimate_band
)
# only take Ex for now
frequency = freqs[-1]
phase = phases[-1]
amplitude = amps[-1]
print(frequency, phase, amplitude)
ant_group.attrs['beacon_freq'] = frequency
ant_group.attrs['beacon_phase'] = phase
ant_group.attrs['beacon_amplitude'] = amplitude
ant_group.attrs['beacon_orientation'] = 'Ex'
found_data[i] = frequency, phase, amplitude
# show histogram of found frequencies
if True:
import matplotlib.pyplot as plt
if True or allow_frequency_fitting:
fig, ax = plt.subplots()
ax.set_xlabel("Frequency")
ax.set_ylabel("Counts")
ax.hist(found_data[:,0], bins='auto', density=False)
if True:
fig, ax = plt.subplots()
ax.set_xlabel("Amplitudes")
ax.set_ylabel("Counts")
ax.hist(found_data[:,2], bins='auto', density=False)
plt.show()