m-thesis-introduction/simulations/airshower_beacon_simulation/bc_beacon_periods.py

142 lines
4.7 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# vim: fdm=indent ts=4
import h5py
from itertools import combinations, zip_longest
import matplotlib.pyplot as plt
import numpy as np
import aa_generate_beacon as beacon
import lib
if __name__ == "__main__":
from os import path
import sys
fname = "ZH_airshower/mysim.sry"
####
fname_dir = path.dirname(fname)
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
if not path.isfile(antennas_fname):
print("Antenna file cannot be found, did you try generating a beacon?")
sys.exit(1)
# Read in antennas from file
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
if True and 'beacon_phase_true' in antennas[0].attrs:
true_phases = np.array([a.attrs['beacon_phase_true'] for a in antennas])
else:
true_phases = np.empty( (len(antennas)) )
for i, ant in enumerate(antennas):
measured_phase = ant.attrs['beacon_phase_measured']
geom_time = lib.geometry_time(tx, ant, c_light=3e8*1e-9)
geom_phase = geom_time * 2*np.pi*f_beacon
true_phases[i] = lib.phase_mod(measured_phase) - lib.phase_mod(geom_phase)
ant.attrs['beacon_phase_true'] = true_phases[i]
# Plot True Phases
if True:
fig, ax = plt.subplots()
spatial_unit=None
fig.suptitle('f= {:2.0f}MHz'.format(f_beacon*1e3))
antenna_locs = list(zip(*[(ant.x, ant.y) for ant in antennas]))
ax.set_xlabel('x' if spatial_unit is None else 'x [{}]'.format(spatial_unit))
ax.set_ylabel('y' if spatial_unit is None else 'y [{}]'.format(spatial_unit))
scatter_kwargs = {}
scatter_kwargs['cmap'] = 'Spectral_r'
scatter_kwargs['vmin'] = -np.pi
scatter_kwargs['vmax'] = +np.pi
color_label='$\\varphi$'
sc = ax.scatter(*antenna_locs, c=true_phases, **scatter_kwargs)
fig.colorbar(sc, ax=ax, label=color_label)
# run over all baselines
if True:
baselines = list(combinations(antennas,2))
# use ref_ant
else:
ref_ant = antennas[0]
baselines = list(zip_longest([], antennas, fillvalue=ref_ant))
integer_periods = None
# read integer ks from file if possible
# and save beacon_phase_true
with h5py.File(antennas_fname, 'a') as fp:
for i, ant in enumerate(antennas):
name = ant.name
# set true beacon_phase
fp['antennas'][name].attrs['beacon_phase_true'] = true_phases[i]
# read integer period from file
if True and 'beacon_ks' in fp:
integer_periods = np.array(fp['beacon_ks'])
# Determine integer multiple of periods to shift
if integer_periods is None:
integer_periods = np.empty( (len(baselines), 3) )
for i, base in enumerate(baselines):
# Delta between first timestamp from both antennas
delta_t_a = base[0].t[0] - base[1].t[0]
# + phase difference
delta_t_p = np.diff([ant.attrs['beacon_phase_true'] for ant in base])[0]/(2*np.pi*f_beacon)
sampling_dt = (base[1].t[1] - base[1].t[0])
print("DT(A,P)", delta_t_a, delta_t_p, 1/f_beacon)
# which traces to keep track of
traces = [ base[0].Ex, base[1].Ex ]
# how many samples to shift
ks, maxima = lib.coherence_sum_maxima(-1*traces[0], -1*traces[1])
max_idx = np.argmax(maxima)
delta_t_c = sampling_dt*ks[max_idx] # ns
print("K", ks[max_idx], sampling_dt, '=', delta_t_c)
k, rest = np.divmod(delta_t_c, f_beacon)
integer_periods[i] = [int(base[0].name), int(base[1].name), k]
print(k, rest*f_beacon, delta_t_p)
# Only continue for two random combinations
if i not in [ 50, 51 ]:
continue
fig, ax = plt.subplots()
ax.set_xlabel("k")
ax.set_ylabel("Maximum correlation")
ax.plot(ks, maxima)
ax.plot(ks[max_idx], maxima[max_idx], marker='X')
fig, ax = plt.subplots()
dt = base[1].t[1] - base[1].t[0]
ax.set_xlabel('t')
ax.plot(base[0].t, traces[0], label='Reference')
ax.plot(base[1].t, traces[1], label='Original', alpha=0.4)
ax.plot(base[1].t + delta_t_a + delta_t_c, traces[1], label='Coherence', alpha=0.6)
ax.legend()
# Save integer periods to antennas
with h5py.File(antennas_fname, 'a') as fp:
group_name = 'beacon_ks'
if group_name in fp:
del fp[group_name]
fp.create_dataset(group_name, data=integer_periods)
plt.show()
# Report back to CLI
print("Period Multiples resolved in", antennas_fname)