2022-11-21 13:46:12 +01:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
# vim: fdm=indent ts=4
|
|
|
|
|
|
|
|
import h5py
|
2022-11-21 18:06:42 +01:00
|
|
|
from itertools import combinations, zip_longest
|
2022-11-21 13:46:12 +01:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import aa_generate_beacon as beacon
|
|
|
|
import lib
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
from os import path
|
|
|
|
import sys
|
|
|
|
|
|
|
|
fname = "ZH_airshower/mysim.sry"
|
|
|
|
|
|
|
|
####
|
|
|
|
fname_dir = path.dirname(fname)
|
|
|
|
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
|
|
|
|
|
|
|
|
# Read in antennas from file
|
|
|
|
f_beacon, tx, antennas = beacon.read_beacon_hdf5(antennas_fname)
|
|
|
|
|
2022-11-21 18:06:42 +01:00
|
|
|
# run over all baselines
|
|
|
|
if True:
|
|
|
|
baselines = list(combinations(antennas,2))
|
|
|
|
# use ref_ant
|
|
|
|
else:
|
|
|
|
ref_ant = antennas[0]
|
|
|
|
baselines = list(zip_longest([], antennas, fillvalue=ref_ant))
|
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
freq_names = antennas[0].beacon_info.keys()
|
|
|
|
if len(freq_names) > 1:
|
|
|
|
raise NotImplementedError
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
freq_name = next(iter(freq_names))
|
2022-11-21 18:06:42 +01:00
|
|
|
|
|
|
|
|
|
|
|
# Determine integer multiple of periods to shift
|
2022-11-22 18:20:00 +01:00
|
|
|
integer_periods = np.empty( (len(baselines), 3) )
|
|
|
|
for i, base in enumerate(baselines):
|
|
|
|
if i not in [98, 99]:
|
|
|
|
continue
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# which traces to keep track of
|
|
|
|
traces = [ base[0].E_AxB, base[1].E_AxB ]
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# how many samples do we need to shift
|
|
|
|
sampling_dt = (base[1].t[1] - base[1].t[0]) # ns
|
|
|
|
ks, maxima = lib.coherence_sum_maxima(traces[0], traces[1])
|
|
|
|
max_idx = np.argmax(maxima)
|
|
|
|
best_k = ks[max_idx]
|
|
|
|
delta_t_coherence = sampling_dt*best_k # ns
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
print("K", best_k, sampling_dt, '=', delta_t_coherence)
|
2022-11-21 18:06:42 +01:00
|
|
|
|
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# get the amount of periods to move
|
|
|
|
f_beacon = base[0].beacon_info[freq_name]['freq']
|
|
|
|
k_period, rest = np.divmod(delta_t_coherence, 1/f_beacon)
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# always keep the reference before traces[1]
|
|
|
|
if rest < 0:
|
|
|
|
k_period -= 1
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# save k_period with antenna names
|
|
|
|
integer_periods[i] = [int(base[0].name), int(base[1].name), k_period]
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
if i in [ 98, 99 ]:
|
|
|
|
print('i',i,'k[T]',k_period, 'rest[ns]',rest, 'T[ns]',1/f_beacon)
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# Show correlation maxima plot
|
|
|
|
if True:
|
|
|
|
fig, ax = plt.subplots()
|
|
|
|
ax.set_title(f"Correlation Maxima {i}")
|
|
|
|
ax.set_xlabel("k")
|
|
|
|
ax.set_ylabel("Maximum correlation")
|
|
|
|
ax.plot(ks, maxima)
|
|
|
|
ax.plot(best_k, maxima[max_idx], marker='X')
|
2022-11-21 18:06:42 +01:00
|
|
|
|
2022-11-22 18:20:00 +01:00
|
|
|
# Delta between first timestamp from both antennas
|
|
|
|
delta_t_antennas = base[0].t[0] - base[1].t[0]
|
|
|
|
|
|
|
|
# Delta t due to the beacon
|
|
|
|
try:
|
|
|
|
true_phases = np.array([ant.beacon_info[freq_name]['true_phase'] for ant in base])
|
|
|
|
delta_true_phases = lib.phase_mod(true_phases[0] - true_phases[1])
|
|
|
|
delta_t_beacon = delta_true_phases/(2*np.pi*f_beacon)
|
|
|
|
except e:
|
|
|
|
# freq_name not found
|
|
|
|
# simply continue and set it them 0
|
|
|
|
print("No beacon")
|
|
|
|
delta_true_phases = 0
|
|
|
|
delta_t_beacon = 0
|
|
|
|
|
|
|
|
print("t0[ns]", delta_t_antennas, "t_beacon[ns]", delta_t_beacon, "phase", delta_true_phases)
|
2022-11-21 18:06:42 +01:00
|
|
|
fig, ax = plt.subplots()
|
|
|
|
ax.set_xlabel('t')
|
2022-11-22 18:20:00 +01:00
|
|
|
ax.plot(base[0].t, traces[0], label=f'Reference {base[0].name}', alpha=0.5)
|
|
|
|
# plot vertical lines indicating f_beacon
|
|
|
|
min_t, max_t = base[0].t[0], base[0].t[-1]
|
|
|
|
N_lines = int( (max_t - min_t)*f_beacon) +1
|
|
|
|
for i, t in enumerate(np.arange(N_lines)/f_beacon):
|
|
|
|
ax.axvline( min_t + t, color='k', alpha=0.5, label=None if i!=0 else 'P_beacon')
|
|
|
|
|
|
|
|
ax.plot(base[1].t + delta_t_antennas, traces[1], label=f'Original {base[1].name} (t0 removed)', alpha=0.4, marker='+', ms=5)
|
|
|
|
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + rest, traces[1], label='Coherence', alpha=0.3, marker='x', ms=5)
|
|
|
|
ax.plot(base[1].t + delta_t_antennas + k_period/f_beacon + delta_t_beacon, traces[1], label='Beacon only + Periods', alpha=0.6)
|
2022-11-21 18:06:42 +01:00
|
|
|
|
|
|
|
ax.legend()
|
|
|
|
|
|
|
|
# Save integer periods to antennas
|
|
|
|
with h5py.File(antennas_fname, 'a') as fp:
|
|
|
|
group_name = 'beacon_ks'
|
|
|
|
if group_name in fp:
|
|
|
|
del fp[group_name]
|
|
|
|
|
|
|
|
fp.create_dataset(group_name, data=integer_periods)
|
|
|
|
|
2022-11-21 13:46:12 +01:00
|
|
|
plt.show()
|
|
|
|
# Report back to CLI
|
2022-11-21 18:06:42 +01:00
|
|
|
print("Period Multiples resolved in", antennas_fname)
|