m-thesis-introduction/lib/signals/digitisedsignal.py

177 lines
5.8 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import numpy as np
import scipy.interpolate as interp
if __name__ == "__main__" and __package__ is None:
import sys
sys.path.append("../../")
__package__ = "lib.signals"
from .signal import *
2022-03-11 17:08:47 +01:00
class DigitisedSignal(Signal):
"""
Model an arbitrary digitised signal that can be translated to another position and time.
"""
def __init__(self, signal, sample_rate, t_0 = 0, x_0 = 0, periodic=True, interp1d_kw = None, velocity=None, t_f = None, x_f = None):
"""
Initialise by saving the raw signal
Parameters
----------
signal : arraylike
The raw signal to wrap.
sample_rate : float
Sample rate of the raw signal.
t_0 : float, optional
Time that this signal is sent out.
x_0 : float, optional
Location that this signal is sent out from.
periodic : bool, optional
Translated signal is 0 if it is not periodic
and the time/distance is outside the samples.
interp1d_kw : bool or dict, optional
Use scipy.interpolate's interp1d_kw for interpolation.
Set to True, or a dictionary to enable.
Dictionary will be entered in as **kwargs.
velocity : float, optional
Defaults to the speed of light in m/s.
t_f : float, optional
Default time that this signal is received.
x_f : float, optional
Default Location that this signal is received.
"""
super().__init__(t_0=t_0, x_0=x_0, velocity=velocity, t_f=t_f, x_f=x_f)
self.raw = np.asarray(signal)
self.periodic = periodic
self.sample_rate = sample_rate # Hz
self.sample_length = len(self.raw)
self.time_length = self.sample_length/sample_rate # s
# choose interpolation method
if not interp1d_kw:
self.interp_f = None
# offload interpolation to scipy.interpolate
else:
interp1d_kw_defaults = {
"copy": False,
"kind": 'linear',
"assume_sorted": True,
"bounds_error": True
}
if self.periodic:
interp1d_kw_defaults['bounds_error'] = False
interp1d_kw_defaults['fill_value'] = (self.raw[-1], self.raw[0])
# merge kwargs
if interp1d_kw is not True:
interp1d_kw = { **interp1d_kw_defaults, **interp1d_kw }
self.interp_f = interp.interp1d(
np.arange(0, self.sample_length),
self.raw,
**interp1d_kw
)
def __len__(self):
return self.sample_length
2022-04-11 12:22:15 +02:00
def raw_time(self):
return np.arange(0, self.time_length, 1/self.sample_rate)
def _translate(self, t_f = None, x_f = None, t_0 = None, x_0 = None, velocity = None):
"""
Translate the signal from (t_0, x_0) to (t_f, x_f) with optional velocity.
2022-04-11 12:22:15 +02:00
Returns the signal at (t_f, x_f) and the total time offset
"""
total_time_offset = self.total_time_offset(t_f=t_f, x_f=x_f, t_0=t_0, x_0=x_0, velocity=velocity)
n_offset = (total_time_offset * self.sample_rate )
# periodic signal
if self.periodic:
n_offset = n_offset % self.sample_length
# non-periodic and possibly outside the bounds
else:
# this is a numpy array
if hasattr(n_offset, 'ndim') and n_offset.ndim > 0:
mask_idx = np.nonzero( (0 > n_offset) | (n_offset >= self.sample_length) )
n_offset[mask_idx] = 0
# not a numpy array
else:
# outside the bounds
if 0 > n_offset or n_offset > self.sample_length:
n_offset = np.nan
# n_offset is invalid
# set amplitude to zero
if n_offset is np.nan:
amplitude = 0
# n_offset is valid, interpolate the amplitude
else:
# offload to scipy interpolation
if self.interp_f:
amplitude = self.interp_f(n_offset)
# self written linear interpolation
else:
n_offset = np.asarray(n_offset)
n_offset_eps, n_offset_int = np.modf(n_offset)
n_offset_int = n_offset.astype(int)
if True:
amplitude = (1-n_offset_eps) * self.raw[n_offset_int] \
+ n_offset_eps * self.raw[(n_offset_int + 1) % self.sample_length]
# use nearest value instead of interpolation
else:
amplitude = self.raw[n_offset_int]
if not self.periodic:
2022-04-11 12:22:15 +02:00
if hasattr(amplitude, 'ndim') and amplitude.ndim > 0:
amplitude[mask_idx] = 0
return amplitude, total_time_offset
if __name__ == "__main__":
import matplotlib.pyplot as plt
from scipy.stats import norm
sample_rate = 3e2 # Hz
t_offset = 8
periodic = False
time = t_offset + np.arange(0, 1, 1/sample_rate) #s
time2 = t_offset + np.arange(-1.5, 1, 1/sample_rate) #s
signal = norm.pdf(time, time[len(time)//2], (time[-1] - time[0])/10)
2022-03-11 17:08:47 +01:00
mysignal = DigitisedSignal(signal, sample_rate, t_0 = t_offset, periodic=True)
mysignal2 = DigitisedSignal(signal, sample_rate, t_0 = t_offset, periodic=False)
fig, ax = plt.subplots(1, 1, figsize=(16,4))
2022-03-11 17:08:47 +01:00
ax.set_title("Raw and DigitisedSignal")
ax.set_ylabel("Amplitude")
ax.set_xlabel("Time")
ax.plot(time, signal, label='Raw signal')
2022-03-11 17:08:47 +01:00
ax.plot(time2, mysignal(time2) +0.5, '.-', label='DigitisedSignal(periodic)+0.5')
ax.plot(time2, mysignal2(time2)-0.5, '.-', label='DigitisedSignal-0.5')
ax.legend()
plt.show();