m-thesis-introduction/airshower_beacon_simulation/db_longitudinal_figure.py

59 lines
1.6 KiB
Python
Raw Normal View History

2023-01-11 18:37:06 +01:00
#!/usr/bin/env python3
# vim: fdm=indent ts=4
"""
Do a reconstruction of airshower after correcting for the
clock offsets.
"""
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # required for projection='3d' on old matplotliblib versions
import numpy as np
from os import path
import pickle
import aa_generate_beacon as beacon
import lib
from lib import rit
if __name__ == "__main__":
import sys
import os
import matplotlib
if os.name == 'posix' and "DISPLAY" not in os.environ:
matplotlib.use('Agg')
from scriptlib import MyArgumentParser
parser = MyArgumentParser()
parser.add_argument('--clock-repair', type=str, default='full', choices=['orig', 'ks', 'phases', 'full'], help='How to repair the clock offsets. (Default: %(default)s)')
args = parser.parse_args()
2023-01-12 14:49:54 +01:00
fig_dir = args.fig_dir
clock_repair_mode = args.clock_repair
show_plots = args.show_plots
2023-01-11 18:37:06 +01:00
####
fname_dir = args.data_dir
2023-01-11 18:37:06 +01:00
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
pickle_fname = path.join(fname_dir, 'res-'+clock_repair_mode+'.pkl')
2023-01-11 18:37:06 +01:00
# create fig_dir
if fig_dir:
os.makedirs(fig_dir, exist_ok=True)
# Load res from pickle
with open(pickle_fname, 'rb') as f:
res = pickle.load(f)
##
# Longitudinal figures
##
for i in range(2):
mode = ['grammage', 'distance'][i]
fig = rit.longitudinal_figure(res.dl[0], res.dX[0], res.profile_rit[0], mode=mode)
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".{clock_repair_mode}.{mode}.pdf"))