2023-01-24 10:58:52 +01:00
#!/usr/bin/env python3
# vim: fdm=indent ts=4
"""
Show how the Power changes when incorporating the
various clock offsets by plotting on a grid .
"""
import matplotlib . pyplot as plt
from mpl_toolkits . mplot3d import Axes3D # required for projection='3d' on old matplotliblib versions
import numpy as np
from os import path
import joblib
from earsim import REvent
from atmocal import AtmoCal
import aa_generate_beacon as beacon
import lib
from lib import rit
2023-05-23 14:03:06 +02:00
def save_overlapping_traces_figure ( test_location , ev , N_plot = 30 , wx = 200 , title_extra = None , fname_distinguish = ' ' , fig_dir = None , location_in_plot_text_loc = ( 0.02 , 0.95 ) , location_text = None , * * fig_kwargs ) :
2023-03-27 16:59:28 +02:00
P , t_ , a_ , a_sum , t_sum = rit . pow_and_time ( test_location , ev , dt = 1 )
fig , axs = plt . subplots ( * * fig_kwargs )
axs . set_title ( " Antenna traces " + ( ( " \n " + title_extra ) if title_extra is not None else ' ' ) )
axs . set_xlabel ( " Time [ns] " )
axs . set_ylabel ( " Amplitude [$ \\ mu V/m$] " )
2023-05-23 14:03:06 +02:00
if location_in_plot_text_loc :
text_loc = location_in_plot_text_loc
if not location_text :
shower_plane_location = rit . location_to_shower_plane ( test_location , ev = ev )
location_text = ' ( ' + ' , ' . join ( [ ' {:.1g} ' . format ( x ) for x in shower_plane_location ] ) + ' ) '
axs . text ( * text_loc , location_text , ha = ' left ' , transform = axs . transAxes )
2023-03-27 16:59:28 +02:00
a_max = [ np . amax ( ant . E_AxB ) for ant in ev . antennas ]
power_sort_idx = np . argsort ( a_max )
for i , idx in enumerate ( reversed ( power_sort_idx ) ) :
if i > = N_plot :
break
alpha = max ( 0.4 , 1 / N_plot )
axs . plot ( t_ [ idx ] , a_ [ idx ] , color = ' r ' , alpha = alpha , lw = 2 )
if fig_dir :
if fname_distinguish :
fname_distinguish = " . " + fname_distinguish
fig . tight_layout ( )
fig . savefig ( path . join ( fig_dir , path . basename ( __file__ ) + f ' { fname_distinguish } .trace_overlap. { case } .pdf ' ) )
fig . savefig ( path . join ( fig_dir , path . basename ( __file__ ) + f ' { fname_distinguish } .trace_overlap. { case } .png ' ) , transparent = True )
# Take center between t_low and t_high
if True :
orig_xlims = axs . get_xlim ( )
if not True : # t_high and t_low from strongest signal
t_low = np . min ( t_ [ power_sort_idx [ - 1 ] ] )
t_high = np . max ( t_ [ power_sort_idx [ - 1 ] ] )
else : # take t_high and t_low from plotted signals
a = [ np . min ( t_ [ idx ] ) for idx in power_sort_idx [ - N_plot : ] ]
t_low = np . nanmin ( a )
b = [ np . max ( t_ [ idx ] ) for idx in power_sort_idx [ - N_plot : ] ]
t_high = np . nanmax ( b )
if False :
axs . plot ( a , [ 0 ] * N_plot , ' gx ' , ms = 10 )
axs . plot ( b , [ 0 ] * N_plot , ' b+ ' , ms = 10 )
center_x = ( t_high - t_low ) / 2 + t_low
low_xlim = max ( orig_xlims [ 0 ] , center_x - wx )
high_xlim = min ( orig_xlims [ 1 ] , center_x + wx )
axs . set_xlim ( low_xlim , high_xlim )
fig . savefig ( path . join ( fig_dir , path . basename ( __file__ ) + f ' { fname_distinguish } .trace_overlap.zoomed. { case } .pdf ' ) )
fig . savefig ( path . join ( fig_dir , path . basename ( __file__ ) + f ' { fname_distinguish } .trace_overlap.zoomed. { case } .png ' ) , transparent = True )
return fig
2023-01-24 10:58:52 +01:00
if __name__ == " __main__ " :
2023-05-01 17:43:20 +02:00
valid_cases = [ ' no_offset ' , ' repair_none ' , ' repair_phases ' , ' repair_full ' ]
2023-01-24 10:58:52 +01:00
import sys
import os
import matplotlib
if os . name == ' posix ' and " DISPLAY " not in os . environ :
matplotlib . use ( ' Agg ' )
atm = AtmoCal ( )
from scriptlib import MyArgumentParser
parser = MyArgumentParser ( )
2023-02-02 17:55:37 +01:00
parser . add_argument ( ' --input-fname ' , type = str , default = None , help = ' Path to mysim.sry, either directory or path. If empty it takes DATA_DIR and appends mysim.sry. (Default: %(default)s ) ' )
2023-01-24 10:58:52 +01:00
group = parser . add_argument_group ( ' figures ' )
for case in valid_cases :
group . add_argument ( ' -- ' + case . replace ( ' _ ' , ' - ' ) , dest = ' figures ' , action = ' append_const ' , const = case )
args = parser . parse_args ( )
2023-02-02 17:55:37 +01:00
if not args . input_fname :
args . input_fname = args . data_dir
if path . isdir ( args . input_fname ) :
args . input_fname = path . join ( args . input_fname , " mysim.sry " )
2023-01-24 10:58:52 +01:00
wanted_cases = args . figures
if not wanted_cases or ' all ' in wanted_cases :
wanted_cases = valid_cases
2023-02-02 08:57:03 +01:00
figsize = ( 12 , 8 )
2023-01-24 10:58:52 +01:00
fig_dir = args . fig_dir
show_plots = args . show_plots
remove_beacon_from_traces = True
2023-01-30 10:24:38 +01:00
apply_signal_window_from_max = True
2023-01-24 10:58:52 +01:00
####
2023-02-02 17:55:37 +01:00
fname_dir = args . data_dir
2023-01-24 10:58:52 +01:00
antennas_fname = path . join ( fname_dir , beacon . antennas_fname )
2023-01-30 10:24:38 +01:00
tx_fname = path . join ( fname_dir , beacon . tx_fname )
2023-04-13 15:04:45 +02:00
beacon_snr_fname = path . join ( fname_dir , beacon . beacon_snr_fname )
2023-01-24 10:58:52 +01:00
# create fig_dir
if fig_dir :
os . makedirs ( fig_dir , exist_ok = True )
# Read in antennas from file
_ , tx , antennas = beacon . read_beacon_hdf5 ( antennas_fname )
2023-01-30 10:24:38 +01:00
_ , __ , txdata = beacon . read_tx_file ( tx_fname )
2023-01-24 10:58:52 +01:00
# Read original REvent
2023-02-02 17:55:37 +01:00
ev = REvent ( args . input_fname )
2023-01-30 10:24:38 +01:00
bak_ants = ev . antennas
2023-01-24 10:58:52 +01:00
# .. patch in our antennas
ev . antennas = antennas
2023-04-12 22:42:59 +02:00
# Read in snr info
2023-04-13 15:04:45 +02:00
beacon_snrs = beacon . read_snr_file ( beacon_snr_fname )
2023-04-28 17:14:49 +02:00
snr_str = f " $ \\ langle SNR \\ rangle$ = { beacon_snrs [ ' mean ' ] : .1g } "
2023-01-24 10:58:52 +01:00
##
## Setup grid
##
X = 400
zgr = 0 #not exact
dXref = atm . distance_to_slant_depth ( np . deg2rad ( ev . zenith ) , 750 , zgr + ev . core [ 2 ] )
scale2d = dXref * np . tan ( np . deg2rad ( 2. ) )
scale4d = dXref * np . tan ( np . deg2rad ( 4. ) )
scale02d = dXref * np . tan ( np . deg2rad ( 0.2 ) )
Nx , Ny = 21 , 21
scales = {
' scale2d ' : scale2d ,
' scale4d ' : scale4d ,
' scale02d ' : scale02d ,
}
2023-03-27 16:59:28 +02:00
N_plot = 30
trace_zoom_wx = 100
2023-01-24 10:58:52 +01:00
plot_titling = {
2023-05-23 14:03:06 +02:00
' no_offset ' : " no clock offsets " ,
' repair_none ' : " randomised clock offsets " ,
' repair_phases ' : " phase clock offsets " ,
' repair_full ' : " phase + period clock offsets "
2023-01-24 10:58:52 +01:00
}
# For now only implement using one freq_name
freq_names = ev . antennas [ 0 ] . beacon_info . keys ( )
if len ( freq_names ) > 1 :
raise NotImplementedError
freq_name = next ( iter ( freq_names ) )
# Pre remove the beacon from the traces
#
# We need to remove it here, so we do not shoot ourselves in
# the foot when changing to the various clock offsets.
2023-01-30 10:24:38 +01:00
#
# Note that the bandpass filter is applied only after E_AxB is
# reconstructed so we have to manipulate the original traces.
2023-01-24 10:58:52 +01:00
if remove_beacon_from_traces :
2023-01-30 10:24:38 +01:00
tx_amps = txdata [ ' amplitudes ' ]
tx_amps_sum = np . sum ( tx_amps )
2023-01-24 10:58:52 +01:00
for i , ant in enumerate ( ev . antennas ) :
beacon_phase = ant . beacon_info [ freq_name ] [ ' beacon_phase ' ]
f = ant . beacon_info [ freq_name ] [ ' freq ' ]
ampl_AxB = ant . beacon_info [ freq_name ] [ ' amplitude ' ]
calc_beacon = lib . sine_beacon ( f , ev . antennas [ i ] . t , amplitude = ampl_AxB , phase = beacon_phase )
2023-01-30 10:24:38 +01:00
# Split up contribution to the various polarisations
for j , amp in enumerate ( tx_amps ) :
if j == 0 :
ev . antennas [ i ] . Ex - = amp * ( 1 / tx_amps_sum ) * calc_beacon
elif j == 1 :
ev . antennas [ i ] . Ey - = amp * ( 1 / tx_amps_sum ) * calc_beacon
elif j == 2 :
ev . antennas [ i ] . Ez - = amp * ( 1 / tx_amps_sum ) * calc_beacon
2023-02-03 15:13:44 +01:00
# Subtract the beacon from E_AxB
2023-01-24 10:58:52 +01:00
ev . antennas [ i ] . E_AxB - = calc_beacon
2023-01-30 10:24:38 +01:00
# Slice the traces to a small part around the peak
if apply_signal_window_from_max :
2023-01-30 13:54:48 +01:00
N_pre , N_post = 250 , 250 # TODO: make this configurable
2023-01-30 10:24:38 +01:00
for i , ant in enumerate ( ev . antennas ) :
2023-02-03 15:13:44 +01:00
# Get max idx from all the traces
# and select the strongest
max_idx = [ ]
maxs = [ ]
for trace in [ ant . Ex , ant . Ey , ant . Ez ] :
idx = np . argmax ( np . abs ( trace ) )
max_idx . append ( idx )
maxs . append ( np . abs ( trace [ idx ] ) )
idx = np . argmax ( maxs )
max_idx = max_idx [ idx ]
2023-01-30 10:24:38 +01:00
low_idx = max ( 0 , max_idx - N_pre )
high_idx = min ( len ( ant . t ) , max_idx + N_post )
ev . antennas [ i ] . t = ant . t [ low_idx : high_idx ]
ev . antennas [ i ] . t_AxB = ant . t_AxB [ low_idx : high_idx ]
ev . antennas [ i ] . Ex = ant . Ex [ low_idx : high_idx ]
ev . antennas [ i ] . Ey = ant . Ey [ low_idx : high_idx ]
ev . antennas [ i ] . Ez = ant . Ez [ low_idx : high_idx ]
ev . antennas [ i ] . E_AxB = ant . E_AxB [ low_idx : high_idx ]
2023-02-03 15:13:44 +01:00
## Apply polarisation and bandpass filter
rit . set_pol_and_bp ( ev )
2023-01-30 10:24:38 +01:00
# backup antenna times
backup_antenna_t = [ ant . t for ant in ev . antennas ]
backup_antenna_t_AxB = [ ant . t_AxB for ant in ev . antennas ]
2023-03-27 16:59:28 +02:00
fig = save_overlapping_traces_figure ( [ 0 , 0 , 0 ] , ev , N_plot = 1 , wx = trace_zoom_wx , title_extra = plot_titling [ case ] , fname_distinguish = f ' single ' , fig_dir = fig_dir , figsize = figsize )
plt . close ( fig )
2023-01-24 10:58:52 +01:00
with joblib . parallel_backend ( " loky " ) :
for case in wanted_cases :
print ( f " Starting { case } figure " )
# Repair clock offsets with the measured offsets
2023-05-01 17:43:20 +02:00
transl_modes = { ' no_offset ' : ' orig ' , ' repair_phases ' : ' phases ' , ' repair_full ' : ' full ' }
2023-01-24 10:58:52 +01:00
if case in transl_modes :
transl_mode = transl_modes [ case ]
measured_offsets = beacon . read_antenna_clock_repair_offsets ( antennas , mode = transl_mode , freq_name = freq_name )
else :
2023-05-23 14:03:06 +02:00
print ( f " Warning: unknown repair case requested ' { case } ' , defaulting to none. " )
2023-01-24 10:58:52 +01:00
measured_offsets = [ 0 ] * len ( ev . antennas )
for i , ant in enumerate ( ev . antennas ) :
total_clock_offset = measured_offsets [ i ]
2023-01-30 10:24:38 +01:00
ev . antennas [ i ] . t = backup_antenna_t [ i ] + total_clock_offset
2023-01-24 10:58:52 +01:00
ev . antennas [ i ] . t_AxB = backup_antenna_t_AxB [ i ] + total_clock_offset
2023-01-30 10:24:38 +01:00
if i == 0 :
# Specifically compare the times
2023-03-27 16:59:28 +02:00
print ( " backup time, time with measured_offset, true clock offset, measured clock offset " )
print ( bak_ants [ i ] . t [ 0 ] , ev . antennas [ i ] . t [ 0 ] , ev . antennas [ i ] . attrs [ ' clock_offset ' ] , measured_offsets [ i ] )
2023-01-30 10:24:38 +01:00
#
# Plot overlapping traces at 0,0,0
#
2023-05-23 14:03:06 +02:00
loc = ( 0 , 0 , 0 )
fig = save_overlapping_traces_figure ( loc , ev , N_plot = N_plot , wx = trace_zoom_wx , title_extra = plot_titling [ case ] , fname_distinguish = f ' { case } .0 ' , fig_dir = fig_dir , figsize = figsize )
plt . close ( fig )
#
# Plot overlapping traces at simulation shower axis
#
dX = atm . distance_to_slant_depth ( np . deg2rad ( ev . zenith ) , X , zgr )
loc = ( 0 ) * ev . uAxB + ( 0 ) * ev . uAxAxB + dX * ev . uA
loc [ 0 : 1 ] = 0
fig = save_overlapping_traces_figure ( loc , ev , N_plot = N_plot , wx = trace_zoom_wx , title_extra = plot_titling [ case ] , fname_distinguish = f ' { case } .axis ' , location_text = f " on simulation axis, $X= { X } $ " , fig_dir = fig_dir , figsize = figsize )
2023-03-27 16:59:28 +02:00
plt . close ( fig )
2023-02-01 17:10:20 +01:00
2023-01-24 10:58:52 +01:00
# Measure power on grid
2023-03-27 16:59:28 +02:00
# and plot overlapping traces at position with highest power
2023-01-24 10:58:52 +01:00
for scalename , scale in scales . items ( ) :
wx , wy = scale , scale
print ( f " Starting grid measurement for figure { case } with { scalename } " )
2023-03-27 16:59:28 +02:00
xx , yy , p , maxp_loc = rit . shower_plane_slice ( ev , X = X , Nx = Nx , Ny = Nx , wx = wx , wy = wy , zgr = zgr )
2023-01-24 10:58:52 +01:00
2023-03-27 16:59:28 +02:00
fig , axs = rit . slice_figure ( ev , X , xx , yy , p , mode = ' sp ' , scatter_kwargs = dict (
vmax = 1e5 ,
vmin = 0 ,
2023-04-13 12:28:04 +02:00
s = 250 ,
2023-03-27 16:59:28 +02:00
cmap = ' inferno ' ,
# edgecolor='black',
) )
2023-01-24 10:58:52 +01:00
suptitle = fig . _suptitle . get_text ( )
fig . suptitle ( " " )
2023-04-13 12:28:04 +02:00
axs . set_title ( " Shower plane slice \n " + plot_titling [ case ] + " \n " + suptitle )
axs . set_aspect ( ' equal ' , ' datalim ' )
2023-04-12 22:42:59 +02:00
axs . legend ( title = snr_str )
2023-01-24 10:58:52 +01:00
2023-04-13 12:28:04 +02:00
axs . set_xlim ( 1.1 * min ( xx ) / 1e3 , 1.1 * max ( xx ) / 1e3 )
axs . set_ylim ( 1.1 * min ( yy ) / 1e3 , 1.1 * max ( yy ) / 1e3 )
2023-01-24 10:58:52 +01:00
if fig_dir :
fig . tight_layout ( )
fig . savefig ( path . join ( fig_dir , path . basename ( __file__ ) + f ' .X { X } . { case } . { scalename } .pdf ' ) )
2023-03-27 16:59:28 +02:00
plt . close ( fig )
#
# Plot overlapping traces at highest power of each scale
#
fig = save_overlapping_traces_figure ( maxp_loc , ev , N_plot = N_plot , wx = trace_zoom_wx , title_extra = plot_titling [ case ] + ' , ' + scalename + ' best ' , fname_distinguish = scalename + ' .best ' , fig_dir = fig_dir , figsize = figsize )
#
# and plot overlapping traces at two other locations
#
2023-05-01 17:43:20 +02:00
if False :
2023-03-27 16:59:28 +02:00
for dist in [ 0.5 , 5 , 10 , 50 , 100 ] :
# only add distance horizontally
location = maxp_loc + np . sqrt ( dist * 1e3 ) * np . array ( [ 1 , 1 , 0 ] )
2023-04-12 22:42:59 +02:00
fig = save_overlapping_traces_figure ( location , ev , N_plot = N_plot , wx = wx , title_extra = plot_titling [ case ] + ' , ' + scalename + f ' , x + { dist } km ' , fname_distinguish = f ' { scalename } .x { dist } ' , fig_dir = fig_dir , figsize = figsize )
2023-03-27 16:59:28 +02:00
plt . close ( fig )
2023-02-01 17:10:20 +01:00
if args . show_plots :
plt . show ( )