m-thesis-introduction/airshower_beacon_simulation/lib/rit.py

439 lines
14 KiB
Python
Raw Normal View History

2022-11-21 18:20:11 +01:00
# from wappy import *
from earsim import *
from atmocal import *
import matplotlib.pyplot as plt
from scipy.signal import hilbert
from scipy import signal
from scipy.interpolate import interp1d
from scipy.optimize import curve_fit,minimize
2023-11-03 17:18:57 +01:00
#import pandas as pd
2022-11-21 18:20:11 +01:00
import os
2023-11-03 17:18:57 +01:00
try:
from tqdm import tqdm
except:
tqdm = lambda x: x
try:
from joblib import Parallel, delayed
except:
Parallel = None
delayed = lambda x: x
2022-11-21 18:20:11 +01:00
plt.rcParams.update({'font.size': 16})
atm = AtmoCal()
from matplotlib import cm
2023-05-01 18:19:03 +02:00
def location_to_shower_plane(loc, u=None, ev=None):
if ev is not None:
uAxB = ev.uAxB
uAxAxB = ev.uAxAxB
uA = ev.uA
else:
uAxB, uAxAxB, uA = u
return np.dot(loc, uAxB), np.dot(loc, uAxAxB), np.dot(loc, uA)
def shower_plane_to_location( x, dXref=0, u=None, ev=None):
if len(x) == 2:
x, y = x
else:
x, y, dXref = x
if ev is not None:
uAxB = ev.uAxB
uAxAxB = ev.uAxAxB
uA = ev.uA
else:
uAxB, uAxAxB, uA = u
return x * uAxB + y * uAxAxB + dXref * uA
2022-11-21 18:20:11 +01:00
def set_pol_and_bp(e,low=0.03,high=0.08):
for ant in e.antennas:
E = [np.dot(e.uAxB,[ex,ey,ez]) for ex,ey,ez in zip(ant.Ex,ant.Ey,ant.Ez)]
dt = ant.t[1] -ant.t[0]
E = block_filter(E,dt,low,high)
ant.E_AxB = E
ant.t_AxB = ant.t
def pow_and_time(test_loc,ev,dt=1.0):
t_ = []
a_ = []
t_min = 1e9
t_max = -1e9
for ant in ev.antennas:
#propagate to test location
aloc = [ant.x,ant.y,ant.z]
delta,dist = atm.light_travel_time(test_loc,aloc)
delta = delta*1e9
t__ = np.subtract(ant.t_AxB,delta)
t_.append(t__)
a_.append(ant.E_AxB)
if t__[0] < t_min:
t_min = t__[0]
if t__[-1] > t_max:
t_max = t__[-1]
t_sum = np.arange(t_min+1,t_max-1,dt)
a_sum = np.zeros(len(t_sum))
#interpolation
for t_r,E_ in zip (t_,a_):
f = interp1d(t_r,E_,assume_sorted=True,bounds_error=False,fill_value=0.)
a_int = f(t_sum)
a_sum = np.add(a_sum,a_int)
if len(a_sum) != 0:
P = np.sum(np.square(np.absolute(np.fft.fft(a_sum))))
# normalise P with the length of the traces
P = P/( t_sum[-1] - t_sum[0])
2022-11-21 18:20:11 +01:00
else:
print("ERROR, a_sum lenght = 0",
"tmin ",t_min,
"t_max ",t_max,
"dt",dt)
P = 0
return P,t_,a_,a_sum,t_sum
2022-11-22 13:41:08 +01:00
def shower_axis_slice(e,Xb=200,Xe=1200,dX=2,zgr=0):
2022-11-21 18:20:11 +01:00
zgr = zgr + e.core[2]
N = int((Xe-Xb)/dX)
Xs = np.array(np.linspace(Xb,Xe,N+1))
ds = np.array([atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr) for X in Xs])
locs = []
for d_ in ds:
xc = np.sin(np.deg2rad(e.zenith))*np.cos(np.deg2rad(e.azimuth))* d_
yc = np.sin(np.deg2rad(e.zenith))*np.sin(np.deg2rad(e.azimuth))* d_
zc = np.cos(np.deg2rad(e.zenith))* d_
locs.append([xc,yc,zc])
p = []
for loc in locs:
P,t_,pulses_,wav,twav = pow_and_time(loc,e)
p.append(P)
p = np.asanyarray(p)
return ds,Xs,locs,p
2023-11-03 17:18:57 +01:00
def shower_plane_slice(e,X=750.,Nx=10,Ny=10,wx=1e3,wy=1e3,xoff=0,yoff=0,zgr=0,n_jobs=None, xs=None, ys=None):
2022-11-21 18:20:11 +01:00
zgr = zgr + e.core[2]
dX = atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr)
2023-11-03 17:18:57 +01:00
x = xs if xs is not None else np.linspace(-wx,wx,Nx)
y = ys if ys is not None else np.linspace(-wy,wy,Ny)
def loop_func(x_, y_, xoff=xoff, yoff=yoff):
2022-11-21 18:20:11 +01:00
loc = (x_+xoff)* e.uAxB + (y_+yoff)*e.uAxAxB + dX *e.uA
P,t_,pulses_,wav,twav = pow_and_time(loc,e)
return x_+xoff, y_+yoff, P, loc
res = ( delayed(loop_func)(x_, y_) for x_ in x for y_ in y)
if Parallel:
#if n_jobs is None change with `with parallel_backend`
res = Parallel(n_jobs=n_jobs)(res)
# unpack loop results
xx, yy, p, locs = zip(*res)
2022-11-21 18:20:11 +01:00
xx = np.asarray(xx)
yy = np.asarray(yy)
p = np.asanyarray(p)
2022-11-21 18:20:11 +01:00
return xx,yy,p,locs[np.argmax(p)]
2023-11-03 17:18:57 +01:00
def slice_figure(e,X,xx,yy,p,mode='horizontal', scatter_kwargs={}, colorbar_kwargs={'label':'Power'},suptitle=True, figsize=(10,8)):
2023-03-27 16:51:36 +02:00
scatter_kwargs = {
**dict(
cmap='Spectral_r',
alpha=0.9,
s=30
),
**scatter_kwargs
}
2023-11-03 17:18:57 +01:00
crosshair_kwargs = dict(ms=30, mew=3)
2023-03-27 16:51:36 +02:00
2023-11-03 17:18:57 +01:00
fig, axs = plt.subplots(1,figsize=figsize)
if suptitle:
fig.suptitle(r'E = %.1g PeV, $\theta$ = %.1f$^\circ$, $\phi$ = %.1f$^\circ$ X = %.f'%(e.energy*10**3,e.zenith,e.azimuth,X))
2023-03-27 16:51:36 +02:00
sc = axs.scatter(xx/1e3,yy/1e3,c=p,**scatter_kwargs)
2023-11-03 17:18:57 +01:00
cbar = fig.colorbar(sc,ax=axs, **colorbar_kwargs)
2022-11-22 13:41:08 +01:00
zgr = 0 + e.core[2]
2022-11-21 18:20:11 +01:00
dX = atm.distance_to_slant_depth(np.deg2rad(e.zenith),X,zgr)
xc = np.sin(np.deg2rad(e.zenith))*np.cos(np.deg2rad(e.azimuth))* dX
yc = np.sin(np.deg2rad(e.zenith))*np.sin(np.deg2rad(e.azimuth))* dX
if mode == 'horizontal':
2023-11-03 17:18:57 +01:00
axs.plot(xc/1e3,yc/1e3,'r+', **crosshair_kwargs)
axs.set_xlabel('x [km]')
axs.set_ylabel('y [km]')
2022-11-21 18:20:11 +01:00
elif mode == "sp":
2023-11-03 17:18:57 +01:00
axs.plot(0,0, 'r+', **crosshair_kwargs)
axs.set_xlabel('-v x B [km]')
axs.set_ylabel(' vxvxB [km]')
# indicate maximum power
2022-11-21 18:20:11 +01:00
im = np.argmax(p)
2023-11-03 17:18:57 +01:00
im_color = 'blue'
im_norm = cbar.norm(p[im])
if im_norm < 0.4:
im_color = '#4488FF'
if True:
cbar.add_lines(levels=[p[im]], colors=[im_color], linewidths=[crosshair_kwargs['mew']])
#cbar.lines[-1].set_linestyles('dotted')
axs.plot(xx[im]/1e3,yy[im]/1e3, 'x', color=im_color, **crosshair_kwargs)
#cbar.ax.axhline(cbar.norm(p[im]), color='b')
2022-11-21 18:20:11 +01:00
fig.tight_layout()
return fig,axs
def dist_to_line(xp,core,u):
xp = np.array(xp)
xp_core = xp-core
c2 = np.dot(xp_core,xp_core)
a2 = np.dot((np.dot(xp_core,u)*u),(np.dot(xp_core,u)*u))
d = (np.abs(c2 - a2))**0.5
return d
def dist_to_line_sum(param,data,weights):
#distance line point: a = xp-core is D= | (a)^2-(a dot n)n |
#where ux is direction of line and x0 is a point in the line (like t = 0)
x0 = param[0]
y0 = param[1]
theta = param[2]
phi = param[3]
core = np.array([x0, y0, 0.])
u = np.array([np.cos(phi)*np.sin(theta),np.sin(phi)*np.sin(theta),np.cos(theta)])
dsum = 0
for xp,w in zip(data,weights):
dsum += dist_to_line(xp,core,u)*w**2
# print('%.2e %.2e %.2e %.2e %.2e'%(x0,y0,theta,phi,dsum))
return dsum/len(data)
2023-11-03 17:18:57 +01:00
def get_axis_points(e,savefig=True,path="",zgr=0,Xlow=300, Xhigh=1000, N_X=15, n_jobs=None, tqdm=tqdm):
Xsteps = np.linspace(Xlow, Xhigh, N_X)
2022-11-21 18:20:11 +01:00
zgr=zgr+e.core[2] #not exact
dXref = atm.distance_to_slant_depth(np.deg2rad(e.zenith),750,zgr)
scale2d = dXref*np.tan(np.deg2rad(2.))
scale4d = dXref*np.tan(np.deg2rad(4.))
scale0_2d=dXref*np.tan(np.deg2rad(0.2))
def loop_func(X):
print("Starting", X)
2022-11-21 18:20:11 +01:00
x,y,p,loc_max = shower_plane_slice(e,X,21,21,scale2d,scale2d)
if savefig:
fig,axs = slice_figure(e,X,x,y,p,'sp')
fig.savefig(path+'X%d_a.pdf'%(X))
plt.close(fig)
im = np.argmax(p)
if np.abs(x[im]) == np.max(x) or np.abs(y[im]) == (np.max(y)):
x,y,p,loc_max = shower_plane_slice(e,X,21,21,scale4d,scale4d)
if savefig:
fig,axs = slice_figure(e,X,x,y,p,'sp')
fig.savefig(path+'X%d_c.pdf'%(X))
plt.close(fig)
im = np.argmax(p)
x,y,p,loc_max = shower_plane_slice(e,X,21,21,scale0_2d,scale0_2d,x[im],y[im])
if savefig:
fig,axs = slice_figure(e,X,x,y,p,'sp')
fig.savefig(path+'X%d_b.pdf'%(X))
plt.close(fig)
print("Finished", X)
return np.max(p), loc_max
2023-11-03 17:18:57 +01:00
res = tqdm((delayed(loop_func)(X) for X in Xsteps), total=len(Xsteps))
if Parallel:
#if n_jobs is None change with `with parallel_backend`
res = Parallel(n_jobs=n_jobs)(res)
# unpack loop results
max_vals, axis_points = zip(*res)
2022-11-21 18:20:11 +01:00
return Xsteps,axis_points,max_vals
def fit_track(e,axis_points,vals,nscale=1e0):
weights = vals/np.max(vals)
data=axis_points[:]
data = [d/nscale for d in data] #km, to have more comparable step sizes
x0=[0,0,np.deg2rad(e.zenith),np.deg2rad(e.azimuth)]
res = minimize(dist_to_line_sum,args=(data,weights),x0=x0)
zen_r = np.rad2deg(res.x[2])
azi_r = np.rad2deg(res.x[3])
print(res,zen_r,e.zenith,azi_r,e.azimuth)
return zen_r,azi_r,[res.x[0]*nscale,res.x[1]*nscale,0]
def update_event(e,core,theta,phi,axp=None):
#recalculate
e.zenith = theta
e.azimuth = phi
theta = np.deg2rad(theta)
phi = np.deg2rad(phi)
e.core = e.core+core
e.uA = np.array([np.cos(phi)*np.sin(theta),np.sin(phi)*np.sin(theta),np.cos(theta)])
e.uAxB = np.cross(e.uA,e.uB)
e.uAxB = e.uAxB/(np.dot(e.uAxB,e.uAxB))**0.5
e.uAxAxB = np.cross(e.uA,e.uAxB)
#antenna position
for a in e.antennas:
a.x -= core[0]
a.y -= core[1]
a.z -= core[2]
if axp != None:
for ap in axp:
ap[0] -= core[0]
ap[1] -= core[1]
ap[2] -= core[2]
def longitudinal_figure(dist,Xs,p,mode='grammage'):
fig, axs = plt.subplots(1,figsize=(6,5))
if mode=='grammage':
axs.plot(Xs,p/np.max(p),'o-')
axs.set_xlabel('X (g/cm$^2$)')
if mode=='distance':
axs.plot(dist/1e3,p/np.max(p),'o-')
axs.set_xlabel('distance from ground (km)')
axs.grid()
fig.tight_layout()
return fig
def time_residuals(e,tlable=True):
ds,tp,nsum,ssum,swidth,azi,x,y,sid = lateral_parameters(e,True,[0,0,0])
fig, axs = plt.subplots(1,figsize=(6,5),sharex=True)
tp = tp-np.min(tp)
cut_outlier = ~((ds<200)&(tp > 10))
axs.plot(ds,tp,'o')
if tlable:
for d,t,s in zip(ds,tp,sid):
plt.text(d,t,s)
# axs.text(ds,tp,sid)
axs.set_xlabel('distance (m)')
axs.set_ylabel('$\Delta t (ns)$')
axs.grid()
z = np.polyfit(ds[cut_outlier],tp[cut_outlier],3)
pfit = np.poly1d(z)
xfit = np.linspace(np.min(ds),np.max(ds),100)
yfit = pfit(xfit)
tres = tp - pfit(ds)
sigma =np.std(tres[cut_outlier])
axs.plot(xfit,yfit,label=r'pol3 fit, $\sigma=%.2f$ (ns)'%(sigma))
axs.legend()
fig.tight_layout()
return fig,tres
def figure_3D(axis_points,max_vals,zen,azi,core,res = 0):
fig = plt.figure(figsize=(5,9))
# fig, axs = plt.subplots(1,2,figsize=(12,8))
ax = fig.add_subplot(2,1,1,projection='3d')
xp = [ap[0]/1e3 for ap in axis_points]
yp = [ap[1]/1e3 for ap in axis_points]
zp = [ap[2]/1e3 for ap in axis_points]
max_vals = np.asarray(max_vals)
ax.scatter(xp, yp, zp,c=max_vals,s=150*(max_vals/np.max(max_vals))**2,cmap='Spectral_r')
ax = fig.add_subplot(2,1,2)
core = np.array(core)
theta = np.deg2rad(zen)
phi = np.deg2rad(azi)
u = np.array([np.cos(phi)*np.sin(theta),np.sin(phi)*np.sin(theta),np.cos(theta)])
residuals = [dist_to_line(ap,core,u) for ap in axis_points]
dist = [np.sum((ap-core)**2)**0.5 for ap in axis_points]
ax.scatter(dist,residuals,c=max_vals,cmap='Spectral_r')
ax.grid()
# ax.plot(xl,yl,zl,'-')
# ax.set_zlim(0,18)
# ax.view_init(15, 10)
fig.tight_layout()
if res != 0:
res.track_dis.append(dist)
res.track_res.append(residuals)
res.track_val.append(max_vals)
return fig
class RITResult():
"""docstring for RITResult."""
def __init__(self):
super(RITResult, self).__init__()
self.xmax_rit = []
self.xmax = []
self.profile_rit = []
self.dX = []
self.dl = []
self.zenith_ini = []
self.azimuth_ini = []
self.core_ini = []
self.dcore_rec = []
self.zenith_rec = []
self.azimuth_rec = []
self.index = []
self.isMC = []
self.track_dis = []
self.track_res =[]
self.track_val =[]
self.station_ids =[]
self.station_x =[]
self.station_y =[]
self.station_z =[]
self.station_maxE = []
self.has_pulse = []
def fill_stations_propeties(e,res):
x = np.array([a.x for a in e.antennas])
y = np.array([a.y for a in e.antennas])
z = np.array([a.z for a in e.antennas])
ids = [a.name for a in e.antennas]
maxE = np.array([np.max(a.E_AxB) for a in e.antennas])
#has_pulse = np.array([np.max(a.has_pulse) for a in e.antennas])
2022-11-21 18:20:11 +01:00
res.station_x.append(x)
res.station_y.append(y)
res.station_z.append(z)
res.station_ids.append(ids)
#res.has_pulse.append(has_pulse)
2022-11-21 18:20:11 +01:00
2023-11-03 17:18:57 +01:00
def reconstruction(e,outfile='', slice_outdir=None, Xlow=300, Xhigh=1000, N_X=15, disable_pol_and_bp=False, tqdm=tqdm):
2022-11-21 18:20:11 +01:00
res = RITResult()
res.isMC.append(True)
res.zenith_ini.append(e.zenith)
res.azimuth_ini.append(e.azimuth)
res.core_ini.append(e.core)
if not disable_pol_and_bp:
set_pol_and_bp(e, 0.03, 0.08)
2022-11-21 18:20:11 +01:00
#only use signal that have a signal in data
fill_stations_propeties(e,res)
2023-11-03 17:18:57 +01:00
Xs,axis_points,max_vals = get_axis_points(e,savefig=(slice_outdir is not None), path=slice_outdir, Xlow=Xlow, Xhigh=Xhigh, N_X=N_X, tqdm=tqdm)
2022-11-21 18:20:11 +01:00
zen,azi,core = fit_track(e,axis_points,max_vals,1e2)
fig = figure_3D(axis_points,max_vals,zen,azi,core,res)
fig.savefig(outfile)
update_event(e,core,zen,azi)
ds,Xs,locs,p = shower_axis_slice(e)
#result
res.dX.append(Xs)
res.dl.append(ds)
res.profile_rit.append(p)
res.xmax_rit.append(Xs[np.argmax(p)])
res.azimuth_rec.append(e.azimuth)
res.zenith_rec.append(e.zenith)
res.dcore_rec.append(core)
return res
2022-11-22 13:41:08 +01:00
if __name__ == "__main__":
file = '../ZH_airshower/mysim.sry'
ev = REvent(file)
set_pol_and_bp(ev)
X = 750
2022-11-22 13:41:08 +01:00
dXref = atm.distance_to_slant_depth(np.deg2rad(ev.zenith),X,0)
2022-11-22 13:41:08 +01:00
scale2d = dXref*np.tan(np.deg2rad(2.))
xx,yy,p,km= shower_plane_slice(ev,X,21,21,scale2d,scale2d)
slice_figure(ev,X,xx,yy,p,mode='sp')
#plt.scatter(xx,yy,c=p)
#plt.colorbar()
2022-11-22 13:41:08 +01:00
plt.show()