mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2024-12-21 11:03:37 +01:00
SNR figure: split script into library and script
This commit is contained in:
parent
d23f8adff2
commit
007bd7f963
8 changed files with 564 additions and 428 deletions
227
fourier/04_signal_to_noise.py
Executable file
227
fourier/04_signal_to_noise.py
Executable file
|
@ -0,0 +1,227 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
__doc__ = \
|
||||
"""
|
||||
Show the curve for signal-to-noise ratio vs N_samples
|
||||
"""
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
from mylib import *
|
||||
|
||||
rng = np.random.default_rng()
|
||||
|
||||
def noisy_sine_realisation_snr(
|
||||
N = 1,
|
||||
f_sample = 250e6, # Hz
|
||||
t_length = 1e4 * 1e-9, # s
|
||||
|
||||
noise_band = passband(30e6, 80e6),
|
||||
noise_sigma = 1,
|
||||
|
||||
# signal properties
|
||||
f_sine = 50e6,
|
||||
signal_band = passband(50e6 - 1e6, 50e6 + 1e6),
|
||||
sine_amp = 0.2,
|
||||
sine_offset = 0,
|
||||
return_ranges_plot = False,
|
||||
cut_signal_band_from_noise_band = False,
|
||||
rng=rng
|
||||
):
|
||||
"""
|
||||
Return N signal to noise ratios determined on
|
||||
N different noise + sine realisations.
|
||||
"""
|
||||
N = int(N)
|
||||
|
||||
init_params = np.array([sine_amp, f_sine, None, sine_offset])
|
||||
|
||||
axs = None
|
||||
snrs = np.zeros( N )
|
||||
time = sampled_time(f_sample, end=t_length)
|
||||
for j in range(N):
|
||||
samples, noise = noisy_sine_sampling(time, init_params, noise_sigma, rng=rng)
|
||||
|
||||
|
||||
# determine signal to noise
|
||||
noise_level = bandlevel(noise, f_sample, noise_band)
|
||||
if cut_signal_band_from_noise_band:
|
||||
lower_noise_band = passband(noise_band[0], signal_band[0])
|
||||
upper_noise_band = passband(signal_band[1], noise_band[1])
|
||||
|
||||
noise_level = bandlevel(noise, f_sample, lower_noise_band)
|
||||
noise_level += bandlevel(noise, f_sample, upper_noise_band)
|
||||
|
||||
signal_level = bandlevel(samples, f_sample, signal_band)
|
||||
|
||||
snrs[j] = np.sqrt(signal_level/noise_level)
|
||||
|
||||
# make a nice plot showing what ranges were taken
|
||||
# and the bandlevels associated with them
|
||||
if return_ranges_plot and j == 0:
|
||||
combined_fft, freqs = ft_spectrum(samples+noise, f_sample)
|
||||
|
||||
# plot the original signal
|
||||
if False:
|
||||
_, ax = plt.subplots()
|
||||
ax = plot_signal(samples+noise, sample_rate=f_sample/1e6, time_unit='us', ax=ax)
|
||||
|
||||
# plot the spectrum
|
||||
if True:
|
||||
freq_scaler=1e6
|
||||
_, axs = plot_combined_spectrum(combined_fft, freqs, freq_scaler=freq_scaler, freq_unit='MHz')
|
||||
|
||||
# indicate band ranges and frequency
|
||||
for ax in axs:
|
||||
ax.axvline(f_sine/freq_scaler, color='r', alpha=0.4)
|
||||
ax.axvspan(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, color='purple', alpha=0.3, label='noiseband')
|
||||
ax.axvspan(signal_band[0]/freq_scaler, signal_band[1]/freq_scaler, color='orange', alpha=0.3, label='signalband')
|
||||
|
||||
# indicate initial phase
|
||||
axs[1].axhline(init_params[2], color='r', alpha=0.4)
|
||||
|
||||
# plot the band levels
|
||||
levelax = axs[0].twinx()
|
||||
levelax.set_ylabel("Bandlevel")
|
||||
levelax.hlines(signal_level, noise_band[0]/freq_scaler, signal_band[1]/freq_scaler, colors=['orange'])
|
||||
levelax.hlines(noise_level, noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, colors=['purple'])
|
||||
levelax.set_ylim(bottom=0)
|
||||
|
||||
axs[0].legend()
|
||||
|
||||
# plot signal_band pass signal
|
||||
if False:
|
||||
freqs = np.fft.fftfreq(len(samples), 1/f_sample)
|
||||
bandmask = bandpass_mask(freqs, band=signal_band)
|
||||
fft = np.fft.fft(samples)
|
||||
fft[ ~bandmask ] = 0
|
||||
bandpassed_samples = np.fft.ifft(fft)
|
||||
|
||||
_, ax3 = plt.subplots()
|
||||
ax3 = plot_signal(bandpassed_samples, sample_rate=f_sample/1e6, time_unit='us', ax=ax3)
|
||||
ax3.set_title("Bandpassed Signal")
|
||||
|
||||
|
||||
return snrs, axs
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from argparse import ArgumentParser
|
||||
from myscriptlib import save_all_figs_to_path_or_show
|
||||
|
||||
rng = np.random.default_rng(1)
|
||||
|
||||
parser = ArgumentParser(description=__doc__)
|
||||
parser.add_argument("fname", metavar="path/to/figure[/]", nargs="?", help="Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown.")
|
||||
|
||||
args = parser.parse_args()
|
||||
default_extensions = ['.pdf', '.png']
|
||||
|
||||
if args.fname == 'none':
|
||||
args.fname = None
|
||||
|
||||
###
|
||||
t_lengths = np.linspace(1e3, 5e4, 5)* 1e-9 # s
|
||||
N = 10e1
|
||||
fs_sine = [33.3e6, 50e6, 73.3e6] # Hz
|
||||
fs_sample = [250e6, 500e6] # Hz
|
||||
if False:
|
||||
# show t_length and fs_sample really don't care
|
||||
fs_iter = [ (fs_sample[0], f_sine, t_lengths) for f_sine in fs_sine ]
|
||||
fs_iter2 = [ (fs_sample[1], f_sine, t_lengths/2) for f_sine in fs_sine ]
|
||||
|
||||
fs_iter += fs_iter2
|
||||
del fs_iter2
|
||||
else:
|
||||
fs_iter = [ (f_sample, f_sine, t_lengths) for f_sample in fs_sample for f_sine in fs_sine ]
|
||||
|
||||
if False:
|
||||
f_sine = fs_sine[0]
|
||||
f_sample = fs_sample[0]
|
||||
N = 1 # Note: keep this low, N figures will be displayed!
|
||||
N_t_length = 10
|
||||
for t_length in t_lengths[-N_t_length-1:-1]:
|
||||
snrs = np.zeros( int(N))
|
||||
for i in range(int(N)):
|
||||
delta_f = 1/t_length
|
||||
signal_band = passband(f_sine- 3*delta_f, f_sine + 3*delta_f)
|
||||
noise_band = passband(30e6, 80e6)
|
||||
|
||||
snrs[i], axs = noisy_sine_realisation_snr(
|
||||
N=1,
|
||||
t_length=t_length,
|
||||
f_sample=f_sample,
|
||||
|
||||
# signal properties
|
||||
f_sine = fs_sine[0],
|
||||
sine_amp = 1,
|
||||
noise_sigma = 1,
|
||||
|
||||
noise_band = noise_band,
|
||||
signal_band = signal_band,
|
||||
|
||||
return_ranges_plot=True,
|
||||
rng=rng,
|
||||
)
|
||||
|
||||
axs[0].set_title("SNR: {}, N:{}".format(snrs[i], t_length*f_sample))
|
||||
axs[0].set_xlim(
|
||||
(f_sine - 20*delta_f)/1e6,
|
||||
(f_sine + 20*delta_f)/1e6
|
||||
)
|
||||
|
||||
print(snrs, "M:",np.mean(snrs))
|
||||
|
||||
plt.show(block=False)
|
||||
else:
|
||||
#original code
|
||||
my_snrs = np.zeros( (len(fs_iter), len(t_lengths), int(N)) )
|
||||
for i, (f_sample, f_sine, t_lengths) in enumerate( fs_iter ):
|
||||
for k, t_length in enumerate(t_lengths):
|
||||
return_ranges_plot = ((k==0) and True) or ( (k==(len(t_lengths)-1)) and True) and i < 1
|
||||
|
||||
delta_f = 1/t_length
|
||||
signal_band = passband(f_sine- 3*delta_f, f_sine + 3*delta_f)
|
||||
noise_band=passband(30e6, 80e6)
|
||||
|
||||
my_snrs[i,k], axs = noisy_sine_realisation_snr(
|
||||
N=N,
|
||||
t_length=t_length,
|
||||
f_sample = f_sample,
|
||||
|
||||
# signal properties
|
||||
f_sine = f_sine,
|
||||
sine_amp = 1,
|
||||
noise_sigma = 1,
|
||||
|
||||
noise_band = noise_band,
|
||||
signal_band = signal_band,
|
||||
|
||||
return_ranges_plot=return_ranges_plot,
|
||||
rng=rng
|
||||
)
|
||||
|
||||
if return_ranges_plot:
|
||||
ranges_axs = axs
|
||||
|
||||
# plot the snrs
|
||||
fig, axs2 = plt.subplots()
|
||||
axs2.set_xlabel("$N = T*f_s$")
|
||||
axs2.set_ylabel("SNR")
|
||||
|
||||
for i, (f_sample, f_sine, t_lengths) in enumerate(fs_iter):
|
||||
# plot the means
|
||||
l = axs2.plot(t_lengths*f_sample, np.mean(my_snrs[i], axis=-1), marker='*', ls='none', label='f:{}MHz, fs:{}MHz'.format(f_sine/1e6, f_sample/1e6), markeredgecolor='black')
|
||||
|
||||
color = l[0].get_color()
|
||||
|
||||
for k, t_length in enumerate(t_lengths):
|
||||
t_length = np.repeat(t_length * f_sample, my_snrs.shape[-1])
|
||||
axs2.plot(t_length, my_snrs[i,k], ls='none', color=color, marker='o', alpha=max(0.01, 1/my_snrs.shape[-1]))
|
||||
|
||||
|
||||
axs2.legend()
|
||||
|
||||
### Save or show figures
|
||||
save_all_figs_to_path_or_show(args.fname, default_basename=__file__, default_extensions=default_extensions)
|
8
fourier/mylib/__init__.py
Normal file
8
fourier/mylib/__init__.py
Normal file
|
@ -0,0 +1,8 @@
|
|||
"""
|
||||
Module to automatically load another (local) module.
|
||||
"""
|
||||
|
||||
from .passband import *
|
||||
from .fft import *
|
||||
from .plotting import *
|
||||
from .util import *
|
44
fourier/mylib/fft.py
Normal file
44
fourier/mylib/fft.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
"""
|
||||
Simple FFT stuff
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import scipy.fftpack as ft
|
||||
|
||||
def get_freq_spec(val,dt):
|
||||
"""From earsim/tools.py"""
|
||||
fval = np.fft.fft(val)[:len(val)//2]
|
||||
freq = np.fft.fftfreq(len(val),dt)[:len(val)//2]
|
||||
return fval, freq
|
||||
|
||||
|
||||
def ft_spectrum( signal, sample_rate=1, ftfunc=None, freqfunc=None, mask_bias=False, normalise_amplitude=False):
|
||||
"""Return a FT of $signal$, with corresponding frequencies"""
|
||||
|
||||
if True:
|
||||
return get_freq_spec(signal, 1/sample_rate)
|
||||
|
||||
n_samples = len(signal)
|
||||
|
||||
if ftfunc is None:
|
||||
real_signal = np.isrealobj(signal)
|
||||
if False and real_signal:
|
||||
ftfunc = ft.rfft
|
||||
freqfunc = ft.rfftfreq
|
||||
else:
|
||||
ftfunc = ft.fft
|
||||
freqfunc = ft.fftfreq
|
||||
|
||||
if freqfunc is None:
|
||||
freqfunc = ft.fftfreq
|
||||
|
||||
normalisation = 2/len(signal) if normalise_amplitude else 1
|
||||
|
||||
spectrum = normalisation * ftfunc(signal)
|
||||
freqs = freqfunc(n_samples, 1/sample_rate)
|
||||
|
||||
if not mask_bias:
|
||||
return spectrum, freqs
|
||||
else:
|
||||
return spectrum[1:], freqs[1:]
|
||||
|
81
fourier/mylib/passband.py
Normal file
81
fourier/mylib/passband.py
Normal file
|
@ -0,0 +1,81 @@
|
|||
|
||||
import numpy as np
|
||||
from collections import namedtuple
|
||||
|
||||
from .fft import ft_spectrum
|
||||
|
||||
class passband(namedtuple("passband", ['low', 'high'], defaults=[0, np.inf])):
|
||||
"""
|
||||
Band for a bandpass filter.
|
||||
It encapsulates a tuple.
|
||||
"""
|
||||
|
||||
def size():
|
||||
return bandsize(self)
|
||||
|
||||
def freq_mask(frequencies):
|
||||
return bandpass_mask(frequencies, self)
|
||||
|
||||
def signal_level(samples, samplerate, normalise_bandsize=True, **ft_kwargs):
|
||||
|
||||
return bandlevel(samples, samplerate, self, normalise_bandsize, **ft_kwargs)
|
||||
|
||||
def filter_samples(samples, samplerate, **ft_kwargs):
|
||||
"""
|
||||
Bandpass the samples with this passband.
|
||||
This is a hard filter.
|
||||
"""
|
||||
fft, freqs = ft_spectrum(samples, samplerate, **ft_kwargs)
|
||||
|
||||
fft[ ~ self.freq_mask(freqs) ] = 0
|
||||
|
||||
return irfft(fft)
|
||||
|
||||
|
||||
def bandpass_samples(samples, samplerate, band=passband(), **ft_kwargs):
|
||||
"""
|
||||
Bandpass the samples with this passband.
|
||||
This is a hard filter.
|
||||
"""
|
||||
fft, freqs = ft_spectrum(samples, samplerate, **ft_kwargs)
|
||||
|
||||
fft[ ~ self.freq_mask(freqs) ] = 0
|
||||
|
||||
return np.fft.irfft(fft)
|
||||
|
||||
def bandpass_mask(freqs, band=passband()):
|
||||
low_pass = abs(freqs) <= band[1]
|
||||
high_pass = abs(freqs) >= band[0]
|
||||
|
||||
return low_pass & high_pass
|
||||
|
||||
def bandsize(band = passband()):
|
||||
return band[1] - band[0]
|
||||
|
||||
def bandlevel(samples, samplerate=1, band=passband(), normalise_bandsize=True, **ft_kwargs):
|
||||
fft, freqs = ft_spectrum(samples, samplerate, **ft_kwargs)
|
||||
|
||||
bandmask = bandpass_mask(freqs, band=band)
|
||||
|
||||
if normalise_bandsize:
|
||||
bins = np.count_nonzero(bandmask, axis=-1)
|
||||
else:
|
||||
bins = 1
|
||||
|
||||
level = np.sum(np.abs(fft[bandmask])**2)
|
||||
|
||||
return level/bins
|
||||
|
||||
def signal_to_noise( samplerate, samples, noise, signal_band, noise_band=None):
|
||||
if noise_band is None:
|
||||
noise_band = sample_band
|
||||
|
||||
if noise is None:
|
||||
noise = samples
|
||||
|
||||
noise_level = bandlevel(noise, samplerate, noise_band)
|
||||
|
||||
signal_level = bandlevel(samples, samplerate, signal_band)
|
||||
|
||||
return (signal_level/noise_level)**0.5
|
||||
|
95
fourier/mylib/plotting.py
Normal file
95
fourier/mylib/plotting.py
Normal file
|
@ -0,0 +1,95 @@
|
|||
"""
|
||||
Functions to simplify plotting
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.gridspec as gridspec
|
||||
import numpy as np
|
||||
|
||||
def plot_spectrum( spectrum, freqs, plot_complex=False, plot_power=False, plot_amplitude=None, ax=None, freq_unit="Hz", freq_scaler=1):
|
||||
""" Plot a signal's spectrum on an Axis object"""
|
||||
plot_amplitude = plot_amplitude or (not plot_power and not plot_complex)
|
||||
alpha = 1
|
||||
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
|
||||
ax.set_title("Spectrum")
|
||||
ax.set_xlabel("f" + (" ["+freq_unit+"]" if freq_unit else "" ))
|
||||
ylabel = ""
|
||||
if plot_amplitude or plot_complex:
|
||||
ylabel = "Amplitude"
|
||||
if plot_power:
|
||||
if ylabel:
|
||||
ylabel += "|"
|
||||
ylabel += "Power"
|
||||
ax.set_ylabel(ylabel)
|
||||
|
||||
if plot_complex:
|
||||
alpha = 0.5
|
||||
ax.plot(freqs/freq_scaler, np.real(spectrum), '.-', label='Real', alpha=alpha)
|
||||
ax.plot(freqs/freq_scaler, np.imag(spectrum), '.-', label='Imag', alpha=alpha)
|
||||
|
||||
if plot_power:
|
||||
ax.plot(freqs/freq_scaler, np.abs(spectrum)**2, '.-', label='Power', alpha=alpha)
|
||||
|
||||
if plot_amplitude:
|
||||
ax.plot(freqs/freq_scaler, np.abs(spectrum), '.-', label='Abs', alpha=alpha)
|
||||
|
||||
ax.legend()
|
||||
|
||||
return ax
|
||||
|
||||
def plot_phase( spectrum, freqs, ylim_epsilon=0.5, ax=None, freq_unit="Hz", freq_scaler=1):
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
|
||||
ax.set_ylabel("Phase")
|
||||
ax.set_xlabel("f" + (" ["+freq_unit+"]" if freq_unit else "" ))
|
||||
|
||||
ax.plot(freqs/freq_scaler, np.angle(spectrum), '.-')
|
||||
ax.set_ylim(-1*np.pi - ylim_epsilon, np.pi + ylim_epsilon)
|
||||
|
||||
return ax
|
||||
|
||||
def plot_signal( signal, sample_rate = 1, ax=None, time=None, time_unit="s", **kwargs):
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
|
||||
if time is None:
|
||||
time = np.arange(len(signal))/sample_rate
|
||||
|
||||
ax.set_title("Signal")
|
||||
ax.set_xlabel("t" + (" ["+time_unit+"]" if time_unit else "" ))
|
||||
ax.set_ylabel("A(t)")
|
||||
|
||||
ax.plot(time, signal, **kwargs)
|
||||
|
||||
return ax
|
||||
|
||||
def plot_combined_spectrum(spectrum, freqs,
|
||||
spectrum_kwargs={}, fig=None, gs=None, freq_scaler=1, freq_unit="Hz"):
|
||||
"""Plot both the frequencies and phase in one figure."""
|
||||
|
||||
# configure plotting layout
|
||||
if fig is None:
|
||||
fig = plt.figure(figsize=(8, 16))
|
||||
|
||||
if gs is None:
|
||||
gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios=[3,1], hspace=0)
|
||||
|
||||
ax1 = fig.add_subplot(gs[:-1, -1])
|
||||
ax2 = fig.add_subplot(gs[-1, -1], sharex=ax1)
|
||||
|
||||
axes = np.array([ax1, ax2])
|
||||
|
||||
# plot the spectrum
|
||||
plot_spectrum(spectrum, freqs, ax=ax1, freq_scaler=freq_scaler, freq_unit=freq_unit, **spectrum_kwargs)
|
||||
|
||||
# plot the phase
|
||||
plot_phase(spectrum, freqs, ax=ax2, freq_scaler=freq_scaler, freq_unit=freq_unit)
|
||||
|
||||
ax1.xaxis.tick_top()
|
||||
[label.set_visible(False) for label in ax1.get_xticklabels()]
|
||||
|
||||
return fig, axes
|
||||
|
31
fourier/mylib/util.py
Normal file
31
fourier/mylib/util.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
"""
|
||||
Various utilities
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
rng = np.random.default_rng()
|
||||
|
||||
|
||||
def phasemod(phase, low=np.pi):
|
||||
"""
|
||||
Modulo phase such that it falls within the
|
||||
interval $[-low, 2\pi - low)$.
|
||||
"""
|
||||
return (phase + low) % (2*np.pi) - low
|
||||
|
||||
def sine_fitfunc(t, amp=1, freq=1, phase=0, off=0):
|
||||
"""Simple sine wave for fitting purposes"""
|
||||
return amp*np.sin( 2*np.pi*freq*t + phase) + off
|
||||
|
||||
def sampled_time(sample_rate=1, start=0, end=1, offset=0):
|
||||
return offset + np.arange(start, end, 1/sample_rate)
|
||||
|
||||
def noisy_sine_sampling(time, init_params, noise_sigma=1, rng=rng):
|
||||
if init_params[2] is None:
|
||||
init_params[2] = phasemod(2*np.pi*rng.random())
|
||||
|
||||
samples = sine_fitfunc(time, *init_params)
|
||||
noise = rng.normal(0, noise_sigma, size=len(samples))
|
||||
|
||||
return samples, noise
|
||||
|
78
fourier/myscriptlib/__init__.py
Normal file
78
fourier/myscriptlib/__init__.py
Normal file
|
@ -0,0 +1,78 @@
|
|||
"""
|
||||
Functions for easy script writing
|
||||
mostly for simpler figure saving from cli
|
||||
"""
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import os.path as path
|
||||
from argparse import ArgumentParser
|
||||
|
||||
def ArgumentParserWithFigure(*args, **kwargs):
|
||||
parser = ArgumentParser(*args, **kwargs)
|
||||
parser.add_argument("fname", metavar="path/to/figure[/]", nargs="?", help="Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown.")
|
||||
|
||||
return parser
|
||||
|
||||
def save_all_figs_to_path_or_show(fnames, figs=None, default_basename=None, default_extensions=['.pdf', '.png']):
|
||||
"""
|
||||
Save all figures to fnames.
|
||||
If fnames is empty, simply call plt.show()
|
||||
"""
|
||||
if not fnames:
|
||||
# empty list, False, None
|
||||
plt.show()
|
||||
return
|
||||
|
||||
if figs is None:
|
||||
figs = [plt.figure(i) for i in plt.get_fignums()]
|
||||
|
||||
default_basename = path.basename(default_basename)
|
||||
|
||||
# singular value
|
||||
if isinstance(fnames, (str, True)):
|
||||
fnames = [fnames]
|
||||
|
||||
if len(fnames) == len(figs):
|
||||
fnames_list = zip(figs, fnames, False)
|
||||
elif len(fnames) == 1:
|
||||
tmp_fname = fnames[0] #needed for generator
|
||||
fnames_list = ( (fig, tmp_fname, len(figs) > 1) for fig in figs)
|
||||
else:
|
||||
# outer product magic
|
||||
fnames_list = ( (fig,fname, False) for fname in fnames for fig in figs )
|
||||
del fnames
|
||||
# format fnames
|
||||
pad_width = max(2, int(np.floor(np.log10(len(figs))+1)))
|
||||
|
||||
fig_fnames = []
|
||||
for fig, fnames, append_num in fnames_list:
|
||||
if not hasattr(fnames, '__len__') or isinstance(fnames, str):
|
||||
# single name
|
||||
fnames = [fnames]
|
||||
|
||||
new_fnames = []
|
||||
for fname in fnames:
|
||||
if path.isdir(fname):
|
||||
if default_basename is not None:
|
||||
fname = path.join(fname, path.splitext(default_basename)[0]) # leave off extension
|
||||
|
||||
elif hasattr(fig, 'basefilename'):
|
||||
fname = path.join(fname, path.splitext(fig.basefilename)[0]) # leave off extension
|
||||
|
||||
if append_num is True:
|
||||
fname += ("_fig{:0"+str(pad_width)+"d}").format(fig.number)
|
||||
|
||||
if not path.splitext(fname)[1]: # no extension
|
||||
for ext in default_extensions:
|
||||
new_fnames.append(fname+ext)
|
||||
else:
|
||||
new_fnames.append(fname)
|
||||
|
||||
fig_fnames.append(new_fnames)
|
||||
|
||||
# save files
|
||||
for fnames, fig in zip(fig_fnames, figs):
|
||||
for fname in fnames:
|
||||
fig.savefig(fname, transparent=True)
|
||||
|
|
@ -1,428 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
__doc__ = \
|
||||
"""
|
||||
Show the curve for signal-to-noise ratio vs N_samples
|
||||
"""
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.gridspec as gridspec
|
||||
import numpy as np
|
||||
import scipy.fftpack as ft
|
||||
|
||||
rng = np.random.default_rng()
|
||||
|
||||
passband = namedtuple("Band", ['low', 'high'], defaults=[0, np.inf])
|
||||
|
||||
def get_freq_spec(val,dt):
|
||||
"""From earsim/tools.py"""
|
||||
fval = np.fft.fft(val)[:len(val)//2]
|
||||
freq = np.fft.fftfreq(len(val),dt)[:len(val)//2]
|
||||
return fval, freq
|
||||
|
||||
|
||||
def ft_spectrum( signal, sample_rate=1, ftfunc=None, freqfunc=None, mask_bias=False, normalise_amplitude=False):
|
||||
"""Return a FT of $signal$, with corresponding frequencies"""
|
||||
|
||||
if True:
|
||||
return get_freq_spec(signal, 1/sample_rate)
|
||||
|
||||
n_samples = len(signal)
|
||||
|
||||
if ftfunc is None:
|
||||
real_signal = np.isrealobj(signal)
|
||||
if False and real_signal:
|
||||
ftfunc = ft.rfft
|
||||
freqfunc = ft.rfftfreq
|
||||
else:
|
||||
ftfunc = ft.fft
|
||||
freqfunc = ft.fftfreq
|
||||
|
||||
if freqfunc is None:
|
||||
freqfunc = ft.fftfreq
|
||||
|
||||
normalisation = 2/len(signal) if normalise_amplitude else 1
|
||||
|
||||
spectrum = normalisation * ftfunc(signal)
|
||||
freqs = freqfunc(n_samples, 1/sample_rate)
|
||||
|
||||
if not mask_bias:
|
||||
return spectrum, freqs
|
||||
else:
|
||||
return spectrum[1:], freqs[1:]
|
||||
|
||||
|
||||
def plot_spectrum( spectrum, freqs, plot_complex=False, plot_power=False, plot_amplitude=None, ax=None, freq_unit="Hz", freq_scaler=1):
|
||||
""" Plot a signal's spectrum on an Axis object"""
|
||||
plot_amplitude = plot_amplitude or (not plot_power and not plot_complex)
|
||||
alpha = 1
|
||||
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
|
||||
ax.set_title("Spectrum")
|
||||
ax.set_xlabel("f" + (" ["+freq_unit+"]" if freq_unit else "" ))
|
||||
ylabel = ""
|
||||
if plot_amplitude or plot_complex:
|
||||
ylabel = "Amplitude"
|
||||
if plot_power:
|
||||
if ylabel:
|
||||
ylabel += "|"
|
||||
ylabel += "Power"
|
||||
ax.set_ylabel(ylabel)
|
||||
|
||||
if plot_complex:
|
||||
alpha = 0.5
|
||||
ax.plot(freqs/freq_scaler, np.real(spectrum), '.-', label='Real', alpha=alpha)
|
||||
ax.plot(freqs/freq_scaler, np.imag(spectrum), '.-', label='Imag', alpha=alpha)
|
||||
|
||||
if plot_power:
|
||||
ax.plot(freqs/freq_scaler, np.abs(spectrum)**2, '.-', label='Power', alpha=alpha)
|
||||
|
||||
if plot_amplitude:
|
||||
ax.plot(freqs/freq_scaler, np.abs(spectrum), '.-', label='Abs', alpha=alpha)
|
||||
|
||||
ax.legend()
|
||||
|
||||
return ax
|
||||
|
||||
def plot_phase( spectrum, freqs, ylim_epsilon=0.5, ax=None, freq_unit="Hz", freq_scaler=1):
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
|
||||
ax.set_ylabel("Phase")
|
||||
ax.set_xlabel("f" + (" ["+freq_unit+"]" if freq_unit else "" ))
|
||||
|
||||
ax.plot(freqs/freq_scaler, np.angle(spectrum), '.-')
|
||||
ax.set_ylim(-1*np.pi - ylim_epsilon, np.pi + ylim_epsilon)
|
||||
|
||||
return ax
|
||||
|
||||
def plot_signal( signal, sample_rate = 1, ax=None, time=None, time_unit="s", **kwargs):
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
|
||||
if time is None:
|
||||
time = np.arange(len(signal))/sample_rate
|
||||
|
||||
ax.set_title("Signal")
|
||||
ax.set_xlabel("t" + (" ["+time_unit+"]" if time_unit else "" ))
|
||||
ax.set_ylabel("A(t)")
|
||||
|
||||
ax.plot(time, signal, **kwargs)
|
||||
|
||||
return ax
|
||||
|
||||
def plot_combined_spectrum(spectrum, freqs,
|
||||
spectrum_kwargs={}, fig=None, gs=None, freq_scaler=1, freq_unit="Hz"):
|
||||
"""Plot both the frequencies and phase in one figure."""
|
||||
|
||||
# configure plotting layout
|
||||
if fig is None:
|
||||
fig = plt.figure(figsize=(8, 16))
|
||||
|
||||
if gs is None:
|
||||
gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios=[3,1], hspace=0)
|
||||
|
||||
ax1 = fig.add_subplot(gs[:-1, -1])
|
||||
ax2 = fig.add_subplot(gs[-1, -1], sharex=ax1)
|
||||
|
||||
axes = np.array([ax1, ax2])
|
||||
|
||||
# plot the spectrum
|
||||
plot_spectrum(spectrum, freqs, ax=ax1, freq_scaler=freq_scaler, freq_unit=freq_unit, **spectrum_kwargs)
|
||||
|
||||
# plot the phase
|
||||
plot_phase(spectrum, freqs, ax=ax2, freq_scaler=freq_scaler, freq_unit=freq_unit)
|
||||
|
||||
ax1.xaxis.tick_top()
|
||||
[label.set_visible(False) for label in ax1.get_xticklabels()]
|
||||
|
||||
return fig, axes
|
||||
|
||||
|
||||
def phasemod(phase, low=np.pi):
|
||||
"""
|
||||
Modulo phase such that it falls within the
|
||||
interval $[-low, 2\pi - low)$.
|
||||
"""
|
||||
return (phase + low) % (2*np.pi) - low
|
||||
|
||||
def save_all_figs_to_path(fnames, figs=None, default_basename=__file__, default_extensions=['.pdf', '.png']):
|
||||
if figs is None:
|
||||
figs = [plt.figure(i) for i in plt.get_fignums()]
|
||||
|
||||
default_basename = path.basename(default_basename)
|
||||
|
||||
# singular value
|
||||
if isinstance(fnames, (str, True)):
|
||||
fnames = [fnames]
|
||||
|
||||
if len(fnames) == len(figs):
|
||||
fnames_list = zip(figs, fnames, False)
|
||||
elif len(fnames) == 1:
|
||||
tmp_fname = fnames[0] #needed for generator
|
||||
fnames_list = ( (fig, tmp_fname, len(figs) > 1) for fig in figs)
|
||||
else:
|
||||
# outer product magic
|
||||
fnames_list = ( (fig,fname, False) for fname in fnames for fig in figs )
|
||||
del fnames
|
||||
# format fnames
|
||||
pad_width = max(2, int(np.floor(np.log10(len(figs))+1)))
|
||||
|
||||
fig_fnames = []
|
||||
for fig, fnames, append_num in fnames_list:
|
||||
if not hasattr(fnames, '__len__') or isinstance(fnames, str):
|
||||
# single name
|
||||
fnames = [fnames]
|
||||
|
||||
new_fnames = []
|
||||
for fname in fnames:
|
||||
if path.isdir(fname):
|
||||
fname = path.join(fname, path.splitext(default_basename)[0]) # leave off extension
|
||||
if append_num is True:
|
||||
fname += ("_fig{:0"+str(pad_width)+"d}").format(fig.number)
|
||||
|
||||
if not path.splitext(fname)[1]: # no extension
|
||||
for ext in default_extensions:
|
||||
new_fnames.append(fname+ext)
|
||||
else:
|
||||
new_fnames.append(fname)
|
||||
|
||||
fig_fnames.append(new_fnames)
|
||||
|
||||
# save files
|
||||
for fnames, fig in zip(fig_fnames, figs):
|
||||
for fname in fnames:
|
||||
fig.savefig(fname, transparent=True)
|
||||
|
||||
def sine_fitfunc(t, amp=1, freq=1, phase=0, off=0):
|
||||
"""Simple sine wave for fitting purposes"""
|
||||
return amp*np.sin( 2*np.pi*freq*t + phase) + off
|
||||
|
||||
def sampled_time(sample_rate=1, start=0, end=1, offset=0):
|
||||
return offset + np.arange(start, end, 1/sample_rate)
|
||||
|
||||
|
||||
def bandpass_mask(freqs, band=passband()):
|
||||
low_pass = abs(freqs) <= band[1]
|
||||
high_pass = abs(freqs) >= band[0]
|
||||
|
||||
return low_pass & high_pass
|
||||
|
||||
def bandsize(band = passband()):
|
||||
return band[1] - band[0]
|
||||
|
||||
def bandlevel(samples, samplerate=1, band=passband(), normalise_bandsize=True, **ft_kwargs):
|
||||
fft, freqs = ft_spectrum(samples, samplerate, **ft_kwargs)
|
||||
|
||||
bandmask = bandpass_mask(freqs, band=band)
|
||||
|
||||
if normalise_bandsize:
|
||||
bins = np.count_nonzero(bandmask, axis=-1)
|
||||
else:
|
||||
bins = 1
|
||||
|
||||
level = np.sum(np.abs(fft[bandmask])**2)
|
||||
|
||||
return level/bins
|
||||
|
||||
|
||||
def noisy_sine_sampling(time, init_params, noise_sigma=1, rng=rng):
|
||||
if init_params[2] is None:
|
||||
init_params[2] = phasemod(2*np.pi*rng.random())
|
||||
|
||||
samples = sine_fitfunc(time, *init_params)
|
||||
noise = rng.normal(0, noise_sigma, size=len(samples))
|
||||
|
||||
|
||||
return samples, noise
|
||||
|
||||
def main(
|
||||
N = 1,
|
||||
f_sample = 250e6, # Hz
|
||||
t_length = 1e4 * 1e-9, # s
|
||||
|
||||
noise_band = passband(30e6, 80e6),
|
||||
noise_sigma = 1,
|
||||
|
||||
# signal properties
|
||||
f_sine = 50e6,
|
||||
signal_band = passband(50e6 - 1e6, 50e6 + 1e6),
|
||||
sine_amp = 0.2,
|
||||
sine_offset = 0,
|
||||
return_ranges_plot = False,
|
||||
cut_signal_band_from_noise_band = False
|
||||
):
|
||||
N = int(N)
|
||||
|
||||
init_params = np.array([sine_amp, f_sine, None, sine_offset])
|
||||
|
||||
axs = None
|
||||
snrs = np.zeros( N )
|
||||
time = sampled_time(f_sample, end=t_length)
|
||||
for j in range(N):
|
||||
samples, noise = noisy_sine_sampling(time, init_params, noise_sigma)
|
||||
|
||||
|
||||
# determine signal to noise
|
||||
noise_level = bandlevel(noise, f_sample, noise_band)
|
||||
if cut_signal_band_from_noise_band:
|
||||
lower_noise_band = passband(noise_band[0], signal_band[0])
|
||||
upper_noise_band = passband(signal_band[1], noise_band[1])
|
||||
|
||||
noise_level = bandlevel(noise, f_sample, lower_noise_band)
|
||||
noise_level += bandlevel(noise, f_sample, upper_noise_band)
|
||||
|
||||
signal_level = bandlevel(samples, f_sample, signal_band)
|
||||
|
||||
snrs[j] = np.sqrt(signal_level/noise_level)
|
||||
|
||||
# make a nice plot showing what ranges were taken
|
||||
# and the bandlevels associated with them
|
||||
if return_ranges_plot and j == 0:
|
||||
combined_fft, freqs = ft_spectrum(samples+noise, f_sample)
|
||||
|
||||
# plot the original signal
|
||||
if False:
|
||||
_, ax = plt.subplots()
|
||||
ax = plot_signal(samples+noise, sample_rate=f_sample/1e6, time_unit='us', ax=ax)
|
||||
|
||||
# plot the spectrum
|
||||
if True:
|
||||
freq_scaler=1e6
|
||||
_, axs = plot_combined_spectrum(combined_fft, freqs, freq_scaler=freq_scaler, freq_unit='MHz')
|
||||
|
||||
# indicate band ranges and frequency
|
||||
for ax in axs:
|
||||
ax.axvline(f_sine/freq_scaler, color='r', alpha=0.4)
|
||||
ax.axvspan(noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, color='purple', alpha=0.3, label='noiseband')
|
||||
ax.axvspan(signal_band[0]/freq_scaler, signal_band[1]/freq_scaler, color='orange', alpha=0.3, label='signalband')
|
||||
|
||||
# indicate initial phase
|
||||
axs[1].axhline(init_params[2], color='r', alpha=0.4)
|
||||
|
||||
# plot the band levels
|
||||
levelax = axs[0].twinx()
|
||||
levelax.set_ylabel("Bandlevel")
|
||||
levelax.hlines(signal_level, noise_band[0]/freq_scaler, signal_band[1]/freq_scaler, colors=['orange'])
|
||||
levelax.hlines(noise_level, noise_band[0]/freq_scaler, noise_band[1]/freq_scaler, colors=['purple'])
|
||||
levelax.set_ylim(bottom=0)
|
||||
|
||||
axs[0].legend()
|
||||
|
||||
# plot signal_band pass signal
|
||||
if False:
|
||||
freqs = np.fft.fftfreq(len(samples), 1/f_sample)
|
||||
bandmask = bandpass_mask(freqs, band=signal_band)
|
||||
fft = np.fft.fft(samples)
|
||||
fft[ ~bandmask ] = 0
|
||||
bandpassed_samples = np.fft.ifft(fft)
|
||||
|
||||
_, ax3 = plt.subplots()
|
||||
ax3 = plot_signal(bandpassed_samples, sample_rate=f_sample/1e6, time_unit='us', ax=ax3)
|
||||
ax3.set_title("Bandpassed Signal")
|
||||
|
||||
|
||||
return snrs, axs
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from argparse import ArgumentParser
|
||||
import os.path as path
|
||||
|
||||
rng = np.random.default_rng(1)
|
||||
|
||||
parser = ArgumentParser(description=__doc__)
|
||||
parser.add_argument("fname", metavar="path/to/figure[/]", nargs="?", help="Location for generated figure, will append __file__ if a directory. If not supplied, figure is shown.")
|
||||
|
||||
args = parser.parse_args()
|
||||
default_extensions = ['.pdf', '.png']
|
||||
|
||||
if args.fname == 'none':
|
||||
args.fname = None
|
||||
|
||||
###
|
||||
t_lengths = np.linspace(1e3, 5e4)* 1e-9 # s
|
||||
N = 10e1
|
||||
f_sine = 53.3e6 # Hz
|
||||
f_sample = 250e6 # Hz
|
||||
|
||||
if False:
|
||||
N = 1 # Note: keep this low, N figures will be displayed!
|
||||
N_t_length = 10
|
||||
for t_length in t_lengths[-N_t_length-1:-1]:
|
||||
snrs = np.zeros( int(N))
|
||||
for i in range(int(N)):
|
||||
delta_f = 1/t_length
|
||||
snrs[i], axs = main(
|
||||
N=1,
|
||||
t_length=t_length,
|
||||
f_sample=f_sample,
|
||||
|
||||
# signal properties
|
||||
f_sine = f_sine,
|
||||
sine_amp = 1,
|
||||
noise_sigma = 1,
|
||||
|
||||
noise_band = passband(30e6, 80e6),
|
||||
signal_band = passband(f_sine- 3*delta_f, f_sine + 3*delta_f),
|
||||
|
||||
return_ranges_plot=True
|
||||
)
|
||||
|
||||
axs[0].set_title("SNR: {}, N:{}".format(snrs[i], t_length*f_sample))
|
||||
axs[0].set_xlim(
|
||||
(f_sine - 20*delta_f)/1e6,
|
||||
(f_sine + 20*delta_f)/1e6
|
||||
)
|
||||
|
||||
print(snrs, "M:",np.mean(snrs))
|
||||
|
||||
plt.show(block=False)
|
||||
|
||||
else:
|
||||
#original code
|
||||
my_snrs = np.zeros( (len(t_lengths), int(N)) )
|
||||
for j, t_length in enumerate(t_lengths):
|
||||
return_ranges_plot = ((j==0) and True) or ( (j==(len(t_lengths)-1)) and True)
|
||||
|
||||
delta_f = 1/t_length
|
||||
|
||||
my_snrs[j], axs = main(
|
||||
N=N,
|
||||
t_length=t_length,
|
||||
f_sample = f_sample,
|
||||
|
||||
# signal properties
|
||||
f_sine = f_sine,
|
||||
sine_amp = 1,
|
||||
noise_sigma = 1,
|
||||
|
||||
noise_band = passband(30e6, 80e6),
|
||||
signal_band = passband(f_sine- 3*delta_f, f_sine + 3*delta_f),
|
||||
|
||||
return_ranges_plot=return_ranges_plot,
|
||||
)
|
||||
|
||||
if return_ranges_plot:
|
||||
ranges_axs = axs
|
||||
|
||||
fig, axs2 = plt.subplots()
|
||||
axs2.set_xlabel("N = T*$f_s$")
|
||||
axs2.set_ylabel("SNR")
|
||||
|
||||
for j, t_length in enumerate(t_lengths):
|
||||
t_length = t_length * f_sample
|
||||
axs2.plot(np.repeat(t_length, my_snrs.shape[1]), my_snrs[j], ls='none', color='blue', marker='o', alpha=max(0.01, 1/my_snrs.shape[1]))
|
||||
# plot the means
|
||||
axs2.plot(t_lengths*f_sample, np.mean(my_snrs, axis=-1), color='green', marker='*', ls='none')
|
||||
|
||||
### Save or show figures
|
||||
if not args.fname:
|
||||
# empty list, False, None
|
||||
plt.show()
|
||||
else:
|
||||
save_all_figs_to_path(args.fname, default_basename=__file__)
|
Loading…
Reference in a new issue