ZH: plot noise parameters if available

+ figlib: histogram with distr fitting
This commit is contained in:
Eric Teunis de Boone 2023-02-20 15:17:56 +01:00
parent 391317eae7
commit 06e4cd9f00
2 changed files with 164 additions and 4 deletions

View file

@ -12,6 +12,8 @@ import numpy as np
import aa_generate_beacon as beacon
import lib
from lib import figlib
if __name__ == "__main__":
from os import path
@ -49,6 +51,7 @@ if __name__ == "__main__":
####
fname_dir = args.data_dir
antennas_fname = path.join(fname_dir, beacon.antennas_fname)
snr_fname = path.join(fname_dir, beacon.snr_fname)
fig_dir = args.fig_dir # set None to disable saving
@ -83,7 +86,8 @@ if __name__ == "__main__":
N_antennas = len(group.keys())
# just for funzies
found_data = np.zeros((N_antennas, 3))
found_data = np.zeros((N_antennas, 3)) # freq, phase, amp
noise_data = np.zeros((N_antennas, 2)) # phase, amp
# Determine frequency and phase
for i, name in enumerate(group.keys()):
@ -133,6 +137,7 @@ if __name__ == "__main__":
# TODO: refine masking
# use beacon but remove where E_AxB-Beacon != 0
# Uses the first traces as reference
t_mask = 0
if N_mask and orients[0] != 'B':
N_pre, N_post = N_mask//2, N_mask//2
@ -166,6 +171,18 @@ if __name__ == "__main__":
beacon_phases = [ 2*np.pi*t0*f_beacon ]
amps = [ 3e-7 ]
# Also try to find the phase from the noise trace if available
if len(h5ant[traces_key]) > 4:
noise_trace = h5ant[traces_key][5]
if np.any(t_mask): # Mask the same area
noise_trace = noise_trace[t_mask]
real, imag = lib.direct_fourier_transform(f_beacon, t_trace, noise_trace)
noise_phase = np.arctan2(imag, real)
noise_amp = (real**2 + imag**2)**0.5
noise_data[i] = noise_phase, noise_amp
# choose highest amp
idx = np.argmax(amps)
if False and len(beacon_phases) > 1:
@ -246,10 +263,16 @@ if __name__ == "__main__":
h5attrs['amplitude'] = amplitude
h5attrs['orientation'] = orientation
if noise_phase:
h5attrs['noise_phase'] = noise_phase
h5attrs['noise_amp'] = noise_amp
print("Beacon Phases, Amplitudes and Frequencies written to", antennas_fname)
# show histogram of found frequencies
if show_plots or fig_dir:
snrs = beacon.read_snr_file(snr_fname)
if True or allow_frequency_fitting:
fig, ax = plt.subplots(figsize=figsize)
ax.set_xlabel("Frequency")
@ -260,12 +283,45 @@ if __name__ == "__main__":
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".hist_freq.pdf"))
if True:
fig, ax = plt.subplots(figsize=figsize)
ax.set_xlabel("Amplitudes")
fig, _ = figlib.fitted_histogram_figure(found_data[:,2], fit_distr=[], mean_snr=snrs['mean'])
ax = fig.axes[0]
ax.set_xlabel("Amplitude")
ax.set_ylabel("Counts")
ax.hist(found_data[:,2], bins='sqrt', density=False)
ax.legend()
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".hist_amp.pdf"))
if (noise_data[0] != 0).any():
if True:
fig, ax = plt.subplots(figsize=figsize)
ax.set_title("Noise Phases")
ax.set_xlabel("Phase")
ax.set_ylabel("#")
ax.hist(noise_data[:,0], bins='sqrt', density=False)
ax.legend()
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".noise.hist_phase.pdf"))
if True:
fig, ax = plt.subplots(figsize=figsize)
ax.set_title("Noise Phase vs Amplitude")
ax.set_xlabel("Phase")
ax.set_ylabel("Amplitude [a.u.]")
ax.plot(noise_data[:,0], noise_data[:,1], ls='none', marker='x')
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".noise.phase_vs_amp.pdf"))
if True:
fig, _ = figlib.fitted_histogram_figure(noise_data[:,1], fit_distr=['rice', 'rayleigh'], mean_snr=snrs['mean'])
ax = fig.axes[0]
ax.set_title("Noise Amplitudes")
ax.set_xlabel("Amplitude [a.u.]")
ax.set_ylabel("#")
ax.legend()
if fig_dir:
fig.savefig(path.join(fig_dir, path.basename(__file__) + f".noise.hist_amp.pdf"))
if show_plots:
plt.show()

View file

@ -1,7 +1,8 @@
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
import scipy.stats as stats
from itertools import zip_longest
def phase_comparison_figure(
measured_phases,
@ -92,3 +93,106 @@ def phase_comparison_figure(
fig.tight_layout()
return fig
def fitted_histogram_figure(
amplitudes,
fit_distr = None,
text_kwargs={},
hist_kwargs={},
mean_snr = None,
ax = None,
**fig_kwargs
):
"""
Create a figure showing $amplitudes$ as a histogram.
If fit_distr is a (list of) string, also fit the respective
distribution function and show the parameters on the figure.
"""
default_hist_kwargs = dict(bins='sqrt', density=False, alpha=0.8, histtype='step', label='hist')
default_text_kwargs = dict(fontsize=14, verticalalignment='top')
if isinstance(fit_distr, str):
fit_distr = [fit_distr]
hist_kwargs = {**default_hist_kwargs, **hist_kwargs}
text_kwargs = {**default_text_kwargs, **text_kwargs}
if ax is None:
fig, ax = plt.subplots(1,1, **fig_kwargs)
else:
fig = ax.get_figure()
text_kwargs['transform'] = ax.transAxes
counts, bins, _patches = ax.hist(amplitudes, **hist_kwargs)
fit_info = []
if fit_distr:
min_x = min(amplitudes)
max_x = max(amplitudes)
dx = bins[1] - bins[0]
scale = len(amplitudes) * dx
xs = np.linspace(min_x, max_x)
for distr in fit_distr:
param_manipulate = lambda x: x
if 'rice' == distr:
name = "Rice"
param_names = [ "$\\nu$", "$\\sigma$" ]
distr_func = stats.rice
fit_params2text_params = lambda x: (x[0]*x[1], x[1])
elif 'gaussian' == distr:
name = "Norm"
param_names = [ "$\\mu$", "$\\sigma$" ]
distr_func = stats.norm
elif 'rayleigh' == distr:
name = "Rayleigh"
param_names = [ "$\\sigma$" ]
distr_func = stats.rayleigh
fit_params2text_params = lambda x: (x[0]+x[1]/2,)
else:
raise ValueError('Unknown distribution function '+distr)
label = name +"(" + ','.join(param_names) + ')'
fit_params = distr_func.fit(amplitudes)
fit_ys = distr_func.pdf(xs, *fit_params)
ax.plot(xs, fit_ys*scale, label=label)
# change parameters if needed
text_fit_params = fit_params2text_params(fit_params)
text_str = "\n".join(
[label]
+
[ f"{param} = {value: .2e}" for param, value in zip_longest(param_names, text_fit_params, fillvalue='?') ]
)
this_info = {
'name': name,
'param_names': param_names,
'param_values': text_fit_params,
'text_str': text_str,
}
fit_info.append(this_info)
loc = (0.02, 0.95)
ax.text(*loc, "\n\n".join([info['text_str'] for info in fit_info]), **{**text_kwargs, **dict(ha='left')})
if mean_snr:
text_str = f"$\\langle SNR \\rangle$ = {mean_snr: .1e}"
loc = (0.98, 0.95)
ax.text(*loc, text_str, **{**text_kwargs, **dict(ha='right')})
return fig, fit_info