ZH: (WIP) fitting random phasor sum to antenna phases

This commit is contained in:
Eric Teunis de Boone 2023-04-13 12:34:14 +02:00
parent 1130f2c679
commit 103bde61f8
2 changed files with 78 additions and 12 deletions

View file

@ -206,7 +206,7 @@ if __name__ == "__main__":
figsize=figsize,
hist_kwargs=hist_kwargs,
fit_gaussian=plot_residuals,
fit_ricianphase=plot_residuals,
fit_randomphasesum=plot_residuals,
return_fit_info = True,
)

View file

@ -1,9 +1,35 @@
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
from scipy import stats
from scipy import special
from scipy import optimize
from itertools import zip_longest
def expectation(x,pdfx):
dx = x[1]-x[0]
return np.sum(x*pdfx*dx)
def variance(x,pdfx):
mu = expectation(x,pdfx)
dx = x[1]-x[0]
return np.sum((x**2*pdfx*dx))-mu**2
def random_phase_sum_distribution(theta, sigma, s=1):
theta = np.asarray(theta)
ct = np.cos(theta)
st = np.sin(theta)
k = s/sigma
pipi = 2*np.pi
return (np.exp(-k**2/2)/pipi) + (
(pipi**-0.5)*k*np.exp(-(k*st)**2/2)) * (
(1.+special.erf(k*ct*2**-0.5))*ct/2)
def gaussian_phase_distribution(theta, sigma, s=1):
theta = np.asarray(theta)
k=s/sigma
return (2*np.pi)**-0.5*k*np.exp(-(k*theta)**2/2)
def phase_comparison_figure(
measured_phases,
true_phases,
@ -16,6 +42,7 @@ def phase_comparison_figure(
legend_on_scatter=True,
secondary_axis='time',
fit_gaussian=False,
fit_randomphasesum=False,
mean_snr=None,
return_fit_info=False,
**fig_kwargs
@ -29,14 +56,19 @@ def phase_comparison_figure(
default_text_kwargs = dict(fontsize=14, verticalalignment='top')
default_sc_kwargs = dict(alpha=0.6, ls='none')
do_hist_plot = hist_kwargs is not False
if hist_kwargs is False:
hist_kwargs = {}
do_scatter_plot = sc_kwargs is not False
if sc_kwargs is False:
sc_kwargs = {}
fig_kwargs = {**default_fig_kwargs, **fig_kwargs}
hist_kwargs = {**default_hist_kwargs, **hist_kwargs}
text_kwargs = {**default_text_kwargs, **text_kwargs}
sc_kwargs = {**default_sc_kwargs, **sc_kwargs}
do_hist_plot = hist_kwargs is not False
do_scatter_plot = sc_kwargs is not False
fig, axs = plt.subplots(0+do_hist_plot+do_scatter_plot, 1, **fig_kwargs)
if not hasattr(axs, '__len__'):
@ -67,10 +99,14 @@ def phase_comparison_figure(
text_kwargs=text_kwargs,
hist_kwargs={**hist_kwargs, **dict(label='Measured', color=colors[0], ls='solid')},
mean_snr=mean_snr,
fit_distr=[],
)
if fit_gaussian:
this_kwargs['fit_distr'] = 'gaussian'
this_kwargs['fit_distr'].append('gaussian')
if fit_randomphasesum:
this_kwargs['fit_distr'].append('randomphasesum')
_, fit_info = fitted_histogram_figure(
measured_phases,
@ -126,7 +162,7 @@ def fitted_histogram_figure(
text_kwargs = {**default_text_kwargs, **text_kwargs}
if ax is None:
fig, ax = plt.subplots(1,1, **fig_kwargs)
fig, ax = plt.subplots(1, 1, **fig_kwargs)
else:
fig = ax.get_figure()
@ -139,6 +175,8 @@ def fitted_histogram_figure(
min_x = min(amplitudes)
max_x = max(amplitudes)
bin_centers = bins[:-1] + np.diff(bins) / 2
dx = bins[1] - bins[0]
scale = len(amplitudes) * dx
@ -146,6 +184,9 @@ def fitted_histogram_figure(
for distr in fit_distr:
fit_params2text_params = lambda x: x
fit_ys = None
fit_params = None
cdf = None
if 'rice' == distr:
name = "Rice"
@ -166,19 +207,44 @@ def fitted_histogram_figure(
fit_params2text_params = lambda x: (x[0]+x[1]/2,)
elif 'randomphasesum' == distr:
name = "RandPhaseS"
param_names = [ "$\\sigma$", 's']
pdf = random_phase_sum_distribution
bounds = ((0,0.9999), (np.inf,1))
fit_params, pcov = optimize.curve_fit(pdf, bin_centers, counts, bounds=bounds)
fit_ys = pdf( xs, *fit_params)
fit_params2text_params = lambda x: (x[1], x[0])
elif 'gaussphase' == distr:
name = 'GaussPhase'
param_names = [ "$\\sigma$", 's']
pdf = gaussian_phase_distribution
bounds = ((0,0.9999), (np.inf,1))
fit_params, pcov = optimize.curve_fit(pdf, bin_centers, counts, bounds=bounds)
fit_ys = pdf( xs, *fit_params)
fit_params2text_params = lambda x: (x[1], x[0])
else:
raise ValueError('Unknown distribution function '+distr)
label = name +"(" + ','.join(param_names) + ')'
if fit_ys is None:
fit_params = distr_func.fit(amplitudes)
fit_ys = distr_func.pdf(xs, *fit_params)
fit_ys = scale * distr_func.pdf(xs, *fit_params)
cdf = distr_func.cdf
ax.plot(xs, fit_ys*scale, label=label)
ax.plot(xs, fit_ys, label=label)
chisq_strs = []
if calc_chisq:
ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
if calc_chisq and cdf:
ct = np.diff(cdf(bins, *fit_params))*np.sum(counts)
c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
chisq_strs = [
f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"