mirror of
				https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
				synced 2025-10-31 03:46:44 +01:00 
			
		
		
		
	ZH: (WIP) fitting random phasor sum to antenna phases
This commit is contained in:
		
							parent
							
								
									1130f2c679
								
							
						
					
					
						commit
						103bde61f8
					
				
					 2 changed files with 78 additions and 12 deletions
				
			
		| 
						 | 
				
			
			@ -206,7 +206,7 @@ if __name__ == "__main__":
 | 
			
		|||
                    figsize=figsize,
 | 
			
		||||
                    hist_kwargs=hist_kwargs,
 | 
			
		||||
                    fit_gaussian=plot_residuals,
 | 
			
		||||
                    fit_ricianphase=plot_residuals,
 | 
			
		||||
                    fit_randomphasesum=plot_residuals,
 | 
			
		||||
                    return_fit_info = True,
 | 
			
		||||
                    )
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,9 +1,35 @@
 | 
			
		|||
import matplotlib.pyplot as plt
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
import scipy.stats as stats
 | 
			
		||||
from scipy import stats
 | 
			
		||||
from scipy import special
 | 
			
		||||
from scipy import optimize
 | 
			
		||||
from itertools import zip_longest
 | 
			
		||||
 | 
			
		||||
def expectation(x,pdfx):
 | 
			
		||||
    dx = x[1]-x[0]
 | 
			
		||||
    return np.sum(x*pdfx*dx)
 | 
			
		||||
 | 
			
		||||
def variance(x,pdfx):
 | 
			
		||||
    mu = expectation(x,pdfx)
 | 
			
		||||
    dx = x[1]-x[0]
 | 
			
		||||
    return np.sum((x**2*pdfx*dx))-mu**2
 | 
			
		||||
 | 
			
		||||
def random_phase_sum_distribution(theta, sigma, s=1):
 | 
			
		||||
    theta = np.asarray(theta)
 | 
			
		||||
    ct = np.cos(theta)
 | 
			
		||||
    st = np.sin(theta)
 | 
			
		||||
    k = s/sigma
 | 
			
		||||
    pipi = 2*np.pi
 | 
			
		||||
    return (np.exp(-k**2/2)/pipi) + (
 | 
			
		||||
        (pipi**-0.5)*k*np.exp(-(k*st)**2/2)) * (
 | 
			
		||||
        (1.+special.erf(k*ct*2**-0.5))*ct/2)
 | 
			
		||||
 | 
			
		||||
def gaussian_phase_distribution(theta, sigma, s=1):
 | 
			
		||||
    theta = np.asarray(theta)
 | 
			
		||||
    k=s/sigma
 | 
			
		||||
    return (2*np.pi)**-0.5*k*np.exp(-(k*theta)**2/2)
 | 
			
		||||
 | 
			
		||||
def phase_comparison_figure(
 | 
			
		||||
        measured_phases,
 | 
			
		||||
        true_phases,
 | 
			
		||||
| 
						 | 
				
			
			@ -16,6 +42,7 @@ def phase_comparison_figure(
 | 
			
		|||
        legend_on_scatter=True,
 | 
			
		||||
        secondary_axis='time',
 | 
			
		||||
        fit_gaussian=False,
 | 
			
		||||
        fit_randomphasesum=False,
 | 
			
		||||
        mean_snr=None,
 | 
			
		||||
        return_fit_info=False,
 | 
			
		||||
        **fig_kwargs
 | 
			
		||||
| 
						 | 
				
			
			@ -29,14 +56,19 @@ def phase_comparison_figure(
 | 
			
		|||
    default_text_kwargs = dict(fontsize=14, verticalalignment='top')
 | 
			
		||||
    default_sc_kwargs = dict(alpha=0.6, ls='none')
 | 
			
		||||
 | 
			
		||||
    do_hist_plot = hist_kwargs is not False
 | 
			
		||||
    if hist_kwargs is False:
 | 
			
		||||
        hist_kwargs = {}
 | 
			
		||||
 | 
			
		||||
    do_scatter_plot = sc_kwargs is not False
 | 
			
		||||
    if sc_kwargs is False:
 | 
			
		||||
        sc_kwargs = {}
 | 
			
		||||
 | 
			
		||||
    fig_kwargs = {**default_fig_kwargs, **fig_kwargs}
 | 
			
		||||
    hist_kwargs = {**default_hist_kwargs, **hist_kwargs}
 | 
			
		||||
    text_kwargs = {**default_text_kwargs, **text_kwargs}
 | 
			
		||||
    sc_kwargs = {**default_sc_kwargs, **sc_kwargs}
 | 
			
		||||
 | 
			
		||||
    do_hist_plot = hist_kwargs is not False
 | 
			
		||||
    do_scatter_plot = sc_kwargs is not False
 | 
			
		||||
 | 
			
		||||
    fig, axs = plt.subplots(0+do_hist_plot+do_scatter_plot, 1, **fig_kwargs)
 | 
			
		||||
 | 
			
		||||
    if not hasattr(axs, '__len__'):
 | 
			
		||||
| 
						 | 
				
			
			@ -67,10 +99,14 @@ def phase_comparison_figure(
 | 
			
		|||
                text_kwargs=text_kwargs,
 | 
			
		||||
                hist_kwargs={**hist_kwargs, **dict(label='Measured', color=colors[0], ls='solid')},
 | 
			
		||||
                mean_snr=mean_snr,
 | 
			
		||||
                fit_distr=[],
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
        if fit_gaussian:
 | 
			
		||||
            this_kwargs['fit_distr'] = 'gaussian'
 | 
			
		||||
            this_kwargs['fit_distr'].append('gaussian')
 | 
			
		||||
 | 
			
		||||
        if fit_randomphasesum:
 | 
			
		||||
            this_kwargs['fit_distr'].append('randomphasesum')
 | 
			
		||||
 | 
			
		||||
        _, fit_info = fitted_histogram_figure(
 | 
			
		||||
                measured_phases,
 | 
			
		||||
| 
						 | 
				
			
			@ -126,7 +162,7 @@ def fitted_histogram_figure(
 | 
			
		|||
    text_kwargs = {**default_text_kwargs, **text_kwargs}
 | 
			
		||||
 | 
			
		||||
    if ax is None:
 | 
			
		||||
        fig, ax = plt.subplots(1,1, **fig_kwargs)
 | 
			
		||||
        fig, ax = plt.subplots(1, 1, **fig_kwargs)
 | 
			
		||||
    else:
 | 
			
		||||
        fig = ax.get_figure()
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -139,6 +175,8 @@ def fitted_histogram_figure(
 | 
			
		|||
        min_x = min(amplitudes)
 | 
			
		||||
        max_x = max(amplitudes)
 | 
			
		||||
 | 
			
		||||
        bin_centers = bins[:-1] + np.diff(bins) / 2
 | 
			
		||||
 | 
			
		||||
        dx = bins[1] - bins[0]
 | 
			
		||||
        scale = len(amplitudes) * dx
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -146,6 +184,9 @@ def fitted_histogram_figure(
 | 
			
		|||
 | 
			
		||||
        for distr in fit_distr:
 | 
			
		||||
            fit_params2text_params = lambda x: x
 | 
			
		||||
            fit_ys = None
 | 
			
		||||
            fit_params = None
 | 
			
		||||
            cdf = None
 | 
			
		||||
 | 
			
		||||
            if 'rice' == distr:
 | 
			
		||||
                name = "Rice"
 | 
			
		||||
| 
						 | 
				
			
			@ -166,19 +207,44 @@ def fitted_histogram_figure(
 | 
			
		|||
 | 
			
		||||
                fit_params2text_params = lambda x: (x[0]+x[1]/2,)
 | 
			
		||||
 | 
			
		||||
            elif 'randomphasesum' == distr:
 | 
			
		||||
                name = "RandPhaseS"
 | 
			
		||||
                param_names = [ "$\\sigma$", 's']
 | 
			
		||||
                pdf = random_phase_sum_distribution
 | 
			
		||||
 | 
			
		||||
                bounds = ((0,0.9999), (np.inf,1))
 | 
			
		||||
                fit_params, pcov = optimize.curve_fit(pdf, bin_centers, counts, bounds=bounds)
 | 
			
		||||
                fit_ys = pdf( xs, *fit_params)
 | 
			
		||||
 | 
			
		||||
                fit_params2text_params = lambda x: (x[1], x[0])
 | 
			
		||||
 | 
			
		||||
            elif 'gaussphase' == distr:
 | 
			
		||||
                name = 'GaussPhase'
 | 
			
		||||
                param_names = [ "$\\sigma$", 's']
 | 
			
		||||
                pdf = gaussian_phase_distribution
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
                bounds = ((0,0.9999), (np.inf,1))
 | 
			
		||||
                fit_params, pcov = optimize.curve_fit(pdf, bin_centers, counts, bounds=bounds)
 | 
			
		||||
                fit_ys = pdf( xs, *fit_params)
 | 
			
		||||
 | 
			
		||||
                fit_params2text_params = lambda x: (x[1], x[0])
 | 
			
		||||
 | 
			
		||||
            else:
 | 
			
		||||
                raise ValueError('Unknown distribution function '+distr)
 | 
			
		||||
 | 
			
		||||
            label = name +"(" + ','.join(param_names) + ')'
 | 
			
		||||
 | 
			
		||||
            fit_params = distr_func.fit(amplitudes)
 | 
			
		||||
            fit_ys = distr_func.pdf(xs, *fit_params)
 | 
			
		||||
            if fit_ys is None:
 | 
			
		||||
                fit_params = distr_func.fit(amplitudes)
 | 
			
		||||
                fit_ys = scale * distr_func.pdf(xs, *fit_params)
 | 
			
		||||
                cdf = distr_func.cdf
 | 
			
		||||
 | 
			
		||||
            ax.plot(xs, fit_ys*scale, label=label)
 | 
			
		||||
            ax.plot(xs, fit_ys, label=label)
 | 
			
		||||
 | 
			
		||||
            chisq_strs = []
 | 
			
		||||
            if calc_chisq:
 | 
			
		||||
                ct = np.diff(distr_func.cdf(bins, *fit_params))*np.sum(counts)
 | 
			
		||||
            if calc_chisq and cdf:
 | 
			
		||||
                ct = np.diff(cdf(bins, *fit_params))*np.sum(counts)
 | 
			
		||||
                c2t = stats.chisquare(counts, ct, ddof=len(fit_params))
 | 
			
		||||
                chisq_strs = [
 | 
			
		||||
                        f"$\\chi^2$/dof = {c2t[0]: .2g}/{len(fit_params)}"
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue