ZH: show phase due to t_trace[0] from measurement

This is not required to be known when finding the phase
as lib.find_beacon_in_traces already accounts for it.
This commit is contained in:
Eric Teunis de Boone 2022-12-12 19:52:34 +01:00
parent 4c834ad8e7
commit 14a9fdb957
2 changed files with 48 additions and 8 deletions

View file

@ -92,7 +92,7 @@ if __name__ == "__main__":
# TODO: refine masking
# use beacon but remove where E_AxB-Beacon != 0
if True:
if True:
if not True:
t_mask = np.isclose(h5ant['E_AxB'][1], h5ant['traces'][4], rtol=1e-3, atol=1e-3)
else:
t_mask = np.ones(len(t_trace), dtype=bool)
@ -156,24 +156,52 @@ if __name__ == "__main__":
amplitude = amps[idx]
orientation = orients[idx]
# Correct for phase by t_trace[0]
corr_phase = lib.phase_mod(2*np.pi*f_beacon*t_trace[0])
if False:
# Subtract phase due to not starting at t=0
# This is already done in beacon_find_traces
phase = lib.phase_mod(phase + corr_phase)
# for reporting using plots
found_data[i] = frequency, phase, amplitude
if (show_plots or fig_dir) and (i == 60 or i == 72):
if (show_plots or fig_dir) and (i == 0 or i == 72 or i == 70):
p2t = lambda phase: phase/(2*np.pi*f_beacon)
fig, ax = plt.subplots()
ax.set_title(f"Beacon at antenna {h5ant.attrs['name']}\nF:{frequency:.2e}, P:{phase:.4f}, A:{amplitude:.1e}")
ax.set_xlabel("t [ns]")
ax.set_ylabel("Amplitude")
for i, trace in enumerate(test_traces):
ax.plot(t_trace, test_traces[i], marker='.', label='trace '+orients[i])
if True:
# let the trace start at t=0
t_0 = min(t_trace)
extra_phase = corr_phase
else:
t_0 = 0
extra_phase = -1*corr_phase
myt = np.linspace(min(t_trace), max(t_trace), 10*len(t_trace))
ax.plot(myt, lib.sine_beacon(frequency, myt, amplitude=amplitude, phase=phase), ls='dashed', label='simulated beacon')
for j, trace in enumerate(test_traces):
ax.plot(t_trace - t_0, test_traces[j], marker='.', label='trace '+orients[j])
myt = np.linspace(min(t_trace), max(t_trace), 10*len(t_trace)) - t_0
ax.plot(myt, lib.sine_beacon(frequency, myt, amplitude=amplitude, t0=0, phase=phase+extra_phase), ls='dotted', label='simulated beacon')
ax.axvline( p2t(lib.phase_mod(-1*(phase+extra_phase), low=0)), color='r', ls='dashed', label='$t_\\varphi$')
ax.axvline(0,color='grey',alpha=0.5)
ax.axhline(0,color='grey',alpha=0.5)
ax.legend()
if fig_dir:
old_xlims = ax.get_xlim()
ax.set_xlim(min(t_trace)-t_0-10,min(t_trace)-t_0+40)
fig.savefig(path.join(fig_dir, __file__ + f".A{h5ant.attrs['name']}.zoomed.pdf"))
ax.set_xlim(*old_xlims)
fig.savefig(path.join(fig_dir, __file__ + f".A{h5ant.attrs['name']}.pdf"))
# save to file

View file

@ -1,5 +1,12 @@
#!/usr/bin/env python3
"""
Test the functions in lib concerning
beacon generation and phase measuring
work correctly together.
"""
import matplotlib.pyplot as plt
import numpy as np
@ -7,20 +14,25 @@ import lib
seed = 12345
dt = 1 # ns
t = np.arange(0, 10*int(1e3), dt)
frequency = 45e-3 # GHz
N = 5e2
t = np.arange(0, 10*int(1e3), dt, dtype=float)
rng = np.random.default_rng(seed)
phase_res = np.zeros(int(N))
# Vary both the base time and the phase
for i in range(int(N)):
t_extra = (2*rng.uniform(size=1) - 1) *1e3
t += t_extra
phase = lib.phase_mod(np.pi*(2*rng.uniform(size=1) -1)) # rad
beacon = lib.sine_beacon(frequency, t, t0=0, phase=phase)
measured = lib.find_beacon_in_traces([beacon], t, frequency, frequency_fit=False)
t -= t_extra
phase_res[i] = lib.phase_mod(measured[1][0] - phase)
fig, ax = plt.subplots()