mirror of
https://gitlab.science.ru.nl/mthesis-edeboone/m-thesis-introduction.git
synced 2025-01-02 08:13:31 +01:00
Script showing fourier transforms at arbitrary frequency,
allowing to determine the phase at any frequency without having to resort to interpolation of a DFT.
This commit is contained in:
parent
205b67f691
commit
165a7c0361
2 changed files with 195 additions and 0 deletions
154
fourier/06_direct_fourier.py
Normal file
154
fourier/06_direct_fourier.py
Normal file
|
@ -0,0 +1,154 @@
|
|||
#!/usr/bin/env python3
|
||||
if __name__ == "__main__":
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from mylib.fft import direct_fourier_transform
|
||||
|
||||
n_samples = 1000
|
||||
nphi = 100
|
||||
f_beacon = 2.3434
|
||||
noise_A = 5
|
||||
|
||||
t = np.linspace(0, 100, n_samples+1)
|
||||
|
||||
phi_in = np.linspace(0, 2*np.pi, nphi)
|
||||
test_freqs = f_beacon + np.linspace(-0.1, 0.1, 300+1)
|
||||
|
||||
|
||||
phi_out = np.zeros( (len(phi_in), len(test_freqs)) )
|
||||
amp_out = np.zeros( (len(phi_in), len(test_freqs)) )
|
||||
|
||||
if not True:
|
||||
# Same length samples
|
||||
# means we can precalculate the c_k and s_k terms
|
||||
c_k, s_k = ft_corr_vectors(test_freqs, t)
|
||||
|
||||
for i, phi in enumerate(phi_in):
|
||||
s = np.sin(2*np.pi*t*f_beacon + phi) + noise_A * np.random.normal(size=len(t))
|
||||
|
||||
real = np.dot(c_k, s)
|
||||
imag = np.dot(s_k, s)
|
||||
|
||||
phi_out[i] = (np.arctan2(real, imag))
|
||||
amp_out[i] = (2/len(t) * (real**2 + imag**2)**0.5)
|
||||
else:
|
||||
sampleset_gen = ( np.sin(2*np.pi*t*f_beacon + phi) + noise_A*np.random.normal(size=len(t)) for phi in phi_in )
|
||||
ft_amp_gen = direct_fourier_transform(test_freqs, t, sampleset_gen)
|
||||
|
||||
for i, ft_amp in enumerate(ft_amp_gen):
|
||||
real = ft_amp[0]
|
||||
imag = ft_amp[1]
|
||||
|
||||
phi_out[i] = np.arctan2(real, imag)
|
||||
amp_out[i] = 2/len(t) * (real**2 + imag**2)**0.5
|
||||
|
||||
######
|
||||
# Figures
|
||||
######
|
||||
import matplotlib.colors as colors
|
||||
cmap = plt.cm.plasma
|
||||
freq_norm = colors.Normalize(vmin=np.amin(test_freqs), vmax=np.amax(test_freqs))
|
||||
freq_cmap = cmap(freq_norm(test_freqs))
|
||||
try:
|
||||
# Amplitudes Histogram
|
||||
if False:
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(projection='3d')
|
||||
ax.set_xlabel("Amplitude")
|
||||
ax.set_ylabel("Frequency")
|
||||
ax.set_zlabel("Count")
|
||||
|
||||
for j, amp in enumerate(amp_out.T):
|
||||
# per test_freq
|
||||
counts, edges = np.histogram(amp, bins='auto', )
|
||||
l = ax.plot(edges[:-1], counts, zs=test_freqs[j], zdir='y', color=freq_cmap[j])
|
||||
|
||||
ax.add_collection3d(plt.fill_between(edges[:-1], 0, counts, color=l[0].get_color(), alpha=0.3), zs=test_freqs[j], zdir='y')
|
||||
|
||||
|
||||
ax.view_init(elev=20., azim=-35)
|
||||
elif False:
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel("Amplitude")
|
||||
ax.set_ylabel("Count")
|
||||
#
|
||||
for j, amp in enumerate(amp_out.T):
|
||||
# per test_freq
|
||||
ax.hist(amp, histtype='step', bins='auto', color=freq_cmap[j])
|
||||
|
||||
# Single Amplitude / Frequency plot showing frequency fitting
|
||||
freq_out = None
|
||||
if True:
|
||||
from numpy.polynomial import Polynomial
|
||||
|
||||
freq_out = np.zeros(len(phi_in))
|
||||
amp_cut = 0.8
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_title("Frequency estimation by parabola fitting.")
|
||||
ax.set_xlabel("Frequency")
|
||||
ax.set_ylabel("Amplitude")
|
||||
|
||||
for j, amp in enumerate(amp_out):
|
||||
|
||||
if j > 2:
|
||||
continue
|
||||
|
||||
max_amp_idx = np.argmax(amp)
|
||||
max_amp = amp[max_amp_idx]
|
||||
# filter amplitudes below amp_cut*max_amp
|
||||
valid_idx = amp >= amp_cut*max_amp
|
||||
|
||||
p_fit = Polynomial.fit(test_freqs[valid_idx], amp[valid_idx], 2)
|
||||
func = p_fit.convert()
|
||||
|
||||
tmp_test_freqs = test_freqs[max_amp_idx] + 0.05*np.linspace(-1,1,101, endpoint=True)
|
||||
func_amps = func(tmp_test_freqs)
|
||||
freq_id = np.argmax(func_amps)
|
||||
|
||||
freq_out[j] = tmp_test_freqs[freq_id]
|
||||
|
||||
# plot tmp_test_freqs and freq_id
|
||||
func_amps_idx = func_amps > 0
|
||||
func_amps = func_amps[func_amps_idx]
|
||||
tmp_test_freqs = tmp_test_freqs[func_amps_idx]
|
||||
|
||||
ax.plot(test_freqs, amp, marker='o')
|
||||
l = ax.plot(tmp_test_freqs, func_amps)
|
||||
ax.axvline(freq_out[j], color=l[0].get_color())
|
||||
|
||||
# Amplitudes figure
|
||||
if True:
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_ylabel("Amplitude")
|
||||
ax.set_xlabel("Frequency")
|
||||
if True:
|
||||
for j, amp in enumerate(amp_out.T):
|
||||
#per test_freq
|
||||
ax.plot(np.tile(test_freqs[j], len(amp)), amp, marker='.', color=freq_cmap[j], alpha=max(0.05, 0))
|
||||
|
||||
|
||||
ax.errorbar(test_freqs, np.mean(amp_out, axis=0), yerr=np.std(amp_out, axis=0))
|
||||
ax.plot(test_freqs, np.mean(amp_out, axis=0), marker='*', color='red', zorder=6)
|
||||
|
||||
# Phase in vs. Phase out figure
|
||||
if True:
|
||||
fig, ax = plt.subplots()
|
||||
amp_cut = 0.8
|
||||
|
||||
ax.set_title(f"Measured phases passing amplitude > {amp_cut}")
|
||||
ax.set_xlabel("Phase in")
|
||||
ax.set_ylabel("Phase out")
|
||||
|
||||
for j, phi in enumerate(phi_out.T):
|
||||
if np.mean(amp_out[:,j]) < amp_cut:
|
||||
# ignore when the amplitudes are not close to 1
|
||||
continue
|
||||
|
||||
# per test_freq
|
||||
ax.plot(phi_in, np.unwrap(phi), label='f-test_f:{:.2e}'.format(f_beacon-test_freqs[j]))#, color=freq_cmap[j])
|
||||
|
||||
ax.legend()
|
||||
finally:
|
||||
plt.show()
|
|
@ -42,3 +42,44 @@ def ft_spectrum( signal, sample_rate=1, ftfunc=None, freqfunc=None, mask_bias=Fa
|
|||
else:
|
||||
return spectrum[1:], freqs[1:]
|
||||
|
||||
def ft_corr_vectors(freqs, time):
|
||||
"""
|
||||
Get the cosine and sine terms for freqs at time.
|
||||
|
||||
Takes the outer product of freqs and time.
|
||||
"""
|
||||
freqtime = np.outer(freqs, time)
|
||||
|
||||
c_k = np.cos(2*np.pi*freqtime)
|
||||
s_k = np.sin(2*np.pi*freqtime)
|
||||
|
||||
return c_k, s_k
|
||||
|
||||
def direct_fourier_transform(freqs, time, samplesets_iterable):
|
||||
"""
|
||||
Determine the fourier transform of each sampleset in samplesets_iterable at freqs.
|
||||
|
||||
The samplesets are expected to have the same time vector.
|
||||
|
||||
Returns either a generator to return the fourier transform for each sampleset
|
||||
if samplesets_iterable is a generator
|
||||
or a numpy array.
|
||||
"""
|
||||
|
||||
c_k, s_k = ft_corr_vectors(freqs, time)
|
||||
|
||||
if not hasattr(samplesets_iterable, '__len__') and hasattr(samplesets_iterable, '__iter__'):
|
||||
# samplesets_iterable is an iterator
|
||||
# return an iterator containing (real, imag) amplitudes
|
||||
return ( (np.dot(c_k, samples), np.dot(s_k, samples)) for samples in samplesets_iterable )
|
||||
|
||||
# Numpy array
|
||||
return np.dot(c_k, samplesets_iterable), np.dot(s_k, samplesets_iterable)
|
||||
|
||||
|
||||
|
||||
def discrete_fourier_properties(samples, samplerate):
|
||||
"""
|
||||
Return f_delta and f_nyquist.
|
||||
"""
|
||||
return (samplerate/(len(samples)), samplerate/2)
|
||||
|
|
Loading…
Reference in a new issue